Search This Blog

Powered by Blogger.

Blog Archive

Labels

About Me

Showing posts with label LLMs. Show all posts

Tech Executives Lead the Charge in Agentic AI Deployment

 


As it turns out, what was once considered a futuristic concept has quickly become a business imperative. As a result, artificial intelligence is now being integrated into the core of enterprise operations in increasingly autonomous ways - and it is doing so even though it had previously been confined to experimental pilot programs. 

In a survey conducted by global consulting firm Ernst & Young (EY), technology executives predicted that within two years, over half of their AI systems will be able to function autonomously. There is a significant milestone coming up in the evolution of artificial intelligence with this prediction, signalling a shift away from assistive technologies towards autonomous systems that can make decisions and execute goals independently. 

The generative AI field has dominated the innovation spotlight in recent years, captivating leaders with its ability to generate text, images, and insights similar to those of a human. However, a more advanced and less publicised form of artificial intelligence has emerged. A system of this kind not only responds, but is also capable of acting – either autonomously or semi-autonomously – in pursuit of specific objectives. 

Previously, agentic artificial intelligence was considered a fringe concept in the business dialogues of the West, but that changed dramatically in late 2024. The number of global searches for “agent AI” and “AI agents” has skyrocketed in recent months, reflecting a strong interest in the field both within the industry and within the public sphere. A significant evolution is taking place in the area of intelligent AI beyond traditional chatbots and prompt-based tools. 

Taking advantage of advances in large language models (LLMs) and the emergence of large reasoning models (LRMs), these intelligent systems are now capable of making autonomous, adaptive decision-making based on real-time reasoning in a way that moves beyond rule-based execution. With agentic AI systems, actions are adjusted according to context and goals, rather than following static, predefined instructions as in earlier software or pre-AI agents. 

The shift marks a new beginning for AI, in which systems no longer act as tools but as intelligent collaborators capable of navigating complexity in a manner that requires little human intervention. To capitalise on the emerging wave of autonomous systems, companies are having to rethink how work is completed, who (or what) performs it, as well as how leadership must adapt to use AI as a true collaborator in strategy execution. 

In today's technologically advanced world, artificial intelligence systems are becoming more active collaborators than passive tools in the workplace, and this represents a new era in workplace innovation. By 2027, Salesforce predicts a massive increase in the adoption of Agentic AI by an astounding 327%, which is a significant change for organisations, workforce strategies, and organisational structures. Despite the potential of the technology, the study finds that 85% of organisations have yet to integrate Agentic AI into their operations despite its promising potential. This transition is being driven by Chief Human Resource Officers (CHROs), who are taking the lead as strategic leaders in this process. 

The company is not only reviewing traditional HR models but also pushing ahead with initiatives focusing on realigning roles, forecasting skills, and promoting agile talent development. As organisations prepare for the deep changes that will be brought about by Agentic AI, human resources leaders must prepare their workforces for jobs that are unlikely to exist yet while managing the evolution of roles that already do exist. 

Salesforce's study examines how Agentic AI is transforming the future of work, reshaping employee responsibilities, and driving an increase in the need for reskilling, as well as the key findings. As an HR function, the responsibility of leading this technological shift with foresight, flexibility, and a renewed emphasis on human-centred innovation in the face of an AI-powered environment, and it is expected to lead by example. 

Technology giant Ernst & Young (EY) has recently released its Technology Pulse Poll, which shows that an increased sense of urgency and confidence among leading technology companies is shaping AI strategies. According to a survey conducted by over 500 technology executives, more than half of them predicted that artificial intelligence agents would constitute most of their future deployments, as they are autonomous or semi-autonomous systems that are capable of executing tasks with little or no human intervention. 

The data shows that there is a rise in self-contained, goal-oriented artificial intelligence solutions becoming integrated into business operations. Moreover, the data indicates that this shift has already begun to occur. There are about 48% of respondents who are either in the process of adopting or have already fully deployed AI agents across a range of different functions of their organisations. 

A significant number of these respondents expect that within the next 24 months, more than 50% of their AI deployments will operate autonomously. This widespread adoption is reflective of a growing belief that agentic AI can be an effective method for facilitating efficiency, agility, and innovation at an unprecedented scale. According to the survey, there is also a significant increase in investment in AI. 

As far as technology leaders are concerned, 92% said they plan to increase spending on AI initiatives, thus demonstrating how important AI is as a strategic priority. Furthermore, over half of these executives are confident that their companies are currently more prepared and ahead of their industry peers when it comes to investing in AI technologies and preparing for their use. Even though 81% of respondents expressed confidence that AI could help their organisations achieve key business objectives over the next year, the optimism regarding the technology's potential remains strong. 

There is an inflexion point that is being marked in these findings. With the advancement of agentic AI from exploration to execution, organisations are not only investing heavily in its development. Still, they are also integrating it into their day-to-day operations to enhance performance. Agentic AI will likely play an important role in the next wave of digital transformation, as it impacts productivity, decision-making, and competitive differentiation in profound ways. 

The more organisations learn about agentic artificial intelligence and the benefits it can provide over generative artificial intelligence, the clearer it becomes to differentiate itself. It is generally accepted that generational AI has excelled at creating content and summarising it, but agentic AI has set itself apart by proactively identifying problems, analysing anomalies, and giving actionable recommendations to solve those problems. It is much more powerful than simply listing a summary of how to fix a maintenance issue. 

An agentic AI system, for instance, will automatically detect the deviation from its defined range, issue an alert, suggest specific adjustments, and provide practical and contextualised guidance to users during the resolution process. By enabling intelligent, decision-oriented systems in place of passive AI outputs, a significant shift has been made toward intelligent AI outputs. It should be noted, however, that as enterprises move toward more autonomous operations, they also need to consider the architectural considerations associated with deploying agentic artificial intelligence - specifically, the choice between single-agent and multi-agent frameworks. 

When many businesses began implementing their first AI projects, they first adopted single-agent systems, where one AI agent manages a wide range of tasks at the same time. The single-agent systems, for example, could be used in a manufacturing setting for monitoring the performance of machines, predicting failures, analysing historical maintenance data and suggesting interventions. The fact is that while such systems may be able to handle complex tasks with layered questioning and analysis, they are often limited by their scalability. 

When a single agent is overwhelmed by a large amount and variety of data, he or she may be unable to perform as well as they should, or even exhibit hallucinations—false and inaccurate outputs which may compromise operational reliability. As a result, multi-agent systems are gaining popularity. These architectures are defined by assigning agents specific tasks and data sources, allowing them each to specialise in a specific area of data collection. 

In particular, a machine efficiency monitoring agent might track system logs, a system log monitoring agent might track historical downtime trends, while another agent might monitor machine efficiency metrics. A coordination agent can be used to direct the efforts of these agents and aggregate their findings into a comprehensive response, which can work independently or in coordination with the orchestration agent. 

In addition to enhancing the accuracy of each agent, the modular design ensures that the entire system is still scalable and resilient under complex workloads, allowing for the optimal performance of the system in general. Multi-agent systems are often a natural progression for organisations already utilising AI tools and data infrastructure. For businesses to extract greater value from their prior investments, existing machine learning models, data streams, and historical records can be aligned with specific agents designed for specific purposes. 

Additionally, these agents can work together dynamically, consulting on each other's behalf, utilising predictive models, and responding to evolving situations in real-time. With this evolving architecture, companies can design AI ecosystems that can handle the increasing complexity of modern digital operations in an adaptive, efficient, and capable manner. 

With artificial intelligence agents becoming increasingly integrated into enterprise security operations, Indian organisations are taking steps proactively to address both new opportunities and emerging risks to mitigate them. It has been reported that 83% of Indian firms have planned to increase security spending in the upcoming year because of data poisoning, a growing concern that involves attackers compromising AI training datasets. 

As well as the increase in AI agents used by IT security teams, this number is predicted to increase from 43% today to 76% within two years. These intelligent systems are currently being utilised for various purposes, including detecting threats, auditing AI models, and maintaining compliance with regulatory requirements. Even though 81% of cybersecurity leaders recognise AI agents as being beneficial for enhancing privacy compliance, 87% also admit that they introduce regulatory challenges as well. 

Trust remains a critical barrier, with 48% of leaders not knowing if their organisations are using high-quality data or if the necessary safeguards have been put in place to protect it. There are still significant regulatory uncertainties and gaps in data governance that hinder full-scale adoption of AI, with only 55% of companies confident they can deploy AI responsibly. 

A strategic and measured approach is imperative as organisations continue to embrace agentic AI to achieve greater efficiency, innovation, and competitive advantage. While businesses can benefit from the increased efficiency, innovation, and competitive advantage that this technology offers, the importance of establishing robust governance frameworks is also no less crucial than ensuring that AI is deployed ethically and responsibly. 

To mitigate challenges like data poisoning and regulatory compliance complexities, companies must invest in comprehensive data quality assurance, transparency mechanisms, and ongoing risk management methods to mitigate challenges such as data poisoning. Achieving cross-functional cooperation between IT, security, and human resources will also be vital for the alignment of AI initiatives with the broader organisational goals as well as the transformation of the workforce. 

Leaders must stress the importance of constant workforce upskilling to prepare employees for increasingly autonomous roles. Managing innovation with accountability can ensure businesses can maximise the potential of agentic AI while preserving trust, compliance, and operational resilience as well. This thoughtful approach will not only accelerate AI adoption but it will also enable sustainable value creation in an increasingly artificially driven business environment.

The Privacy Risks of ChatGPT and AI Chatbots

 


AI chatbots like ChatGPT have captured widespread attention for their remarkable conversational abilities, allowing users to engage on diverse topics with ease. However, while these tools offer convenience and creativity, they also pose significant privacy risks. The very technology that powers lifelike interactions can also store, analyze, and potentially resurface user data, raising critical concerns about data security and ethical use.

The Data Behind AI's Conversational Skills

Chatbots like ChatGPT rely on Large Language Models (LLMs) trained on vast datasets to generate human-like responses. This training often includes learning from user interactions. Much like how John Connor taught the Terminator quirky catchphrases in Terminator 2: Judgment Day, these systems refine their capabilities through real-world inputs. However, this improvement process comes at a cost: personal data shared during conversations may be stored and analyzed, often without users fully understanding the implications.

For instance, OpenAI’s terms and conditions explicitly state that data shared with ChatGPT may be used to improve its models. Unless users actively opt-out through privacy settings, all shared information—from casual remarks to sensitive details like financial data—can be logged and analyzed. Although OpenAI claims to anonymize and aggregate user data for further study, the risk of unintended exposure remains.

Real-World Privacy Breaches

Despite assurances of data security, breaches have occurred. In May 2023, hackers exploited a vulnerability in ChatGPT’s Redis library, compromising the personal data of around 101,000 users. This breach underscored the risks associated with storing chat histories, even when companies emphasize their commitment to privacy. Similarly, companies like Samsung faced internal crises when employees inadvertently uploaded confidential information to chatbots, prompting some organizations to ban generative AI tools altogether.

Governments and industries are starting to address these risks. For instance, in October 2023, President Joe Biden signed an executive order focusing on privacy and data protection in AI systems. While this marks a step in the right direction, legal frameworks remain unclear, particularly around the use of user data for training AI models without explicit consent. Current practices are often classified as “fair use,” leaving consumers exposed to potential misuse.

Protecting Yourself in the Absence of Clear Regulations

Until stricter regulations are implemented, users must take proactive steps to safeguard their privacy while interacting with AI chatbots. Here are some key practices to consider:

  1. Avoid Sharing Sensitive Information
    Treat chatbots as advanced algorithms, not confidants. Avoid disclosing personal, financial, or proprietary information, no matter how personable the AI seems.
  2. Review Privacy Settings
    Many platforms offer options to opt out of data collection. Regularly review and adjust these settings to limit the data shared with AI

The Growing Cybersecurity Concerns of Generative Artificial Intelligence

In the rapidly evolving world of technology, generative artificial intelligence (GenAI) programs are emerging as both powerful tools and significant security risks. Cybersecurity researchers have long warned about the vulnerabilities inherent in these systems. From cleverly crafted prompts that can bypass safety measures to potential data leaks exposing sensitive information, the threats posed by GenAI are numerous and increasingly concerning. Elia Zaitsev, Chief Technology Officer of cybersecurity firm CrowdStrike, recently highlighted these issues in an interview with ZDNET. 

"This is a new attack vector that opens up a new attack surface," Zaitsev stated. He emphasized the hurried adoption of GenAI technologies, often at the expense of established security protocols. "I see with generative AI a lot of people just rushing to use this technology, and they're bypassing the normal controls and methods of secure computing," he explained. 

Zaitsev draws a parallel between GenAI and fundamental computing innovations. "In many ways, you can think of generative AI technology as a new operating system or a new programming language," he noted. The lack of widespread expertise in handling the pros and cons of GenAI compounds the problem, making it challenging to use and secure these systems effectively. The risk extends beyond poorly designed applications. 

According to Zaitsev, the centralization of valuable information within large language models (LLMs) presents a significant vulnerability. "The same problem of centralizing a bunch of valuable information exists with all LLM technology," he said. 

To mitigate these risks, Zaitsev advises against allowing LLMs unfettered access to data stores. Instead, he recommends a more controlled approach. "In a sense, you must tame RAG before it makes the problem worse," he suggested. This involves leveraging the LLM's capability to interpret open-ended questions and using traditional programming methods to fulfill queries securely. "For example, Charlotte AI often lets users ask generic questions," Zaitsev explained. 

"What Charlotte does is identify the relevant part of the platform and the specific data set that holds the source of truth, then pulls from that via an API call, rather than allowing the LLM to query the database directly." 

As enterprises increasingly integrate GenAI into their operations, understanding and addressing its security implications is crucial. By implementing stringent control measures and fostering a deeper understanding of this technology, organizations can harness its potential while safeguarding their valuable data.

IT and Consulting Firms Leverage Generative AI for Employee Development


Generative AI (GenAI) has emerged as a driving focus area in the learning and development (L&D) strategies of IT and consulting firms. Companies are increasingly investing in comprehensive training programs to equip their employees with essential GenAI skills, spanning from basic concepts to advanced technical know-how.

Training courses in GenAI cover a wide range of topics. Introductory courses, which can be completed in just a few hours, address the fundamentals, ethics, and social implications of GenAI. For those seeking deeper knowledge, advanced modules are available that focus on development using GenAI and large language models (LLMs), requiring over 100 hours to complete.

These courses are designed to cater to various job roles and functions within the organisations. For example, KPMG India aims to have its entire workforce trained in GenAI by the end of the fiscal year, with 50% already trained. Their programs are tailored to different levels of employees, from teaching leaders about return on investment and business envisioning to training coders in prompt engineering and LLM operations.

EY India has implemented a structured approach, offering distinct sets of courses for non-technologists, software professionals, project managers, and executives. Presently, 80% of their employees are trained in GenAI. Similarly, PwC India focuses on providing industry-specific masterclasses for leaders to enhance their client interactions, alongside offering brief nano courses for those interested in the basics of GenAI.

Wipro organises its courses into three levels based on employee seniority, with plans to develop industry-specific courses for domain experts. Cognizant has created shorter courses for leaders, sales, and HR teams to ensure a broad understanding of GenAI. Infosys also has a program for its senior leaders, with 400 of them currently enrolled.

Ray Wang, principal analyst and founder at Constellation Research, highlighted the extensive range of programs developed by tech firms, including training on Python and chatbot interactions. Cognizant has partnerships with Udemy, Microsoft, Google Cloud, and AWS, while TCS collaborates with NVIDIA, IBM, and GitHub.

Cognizant boasts 160,000 GenAI-trained employees, and TCS offers a free GenAI course on Oracle Cloud Infrastructure until the end of July to encourage participation. According to TCS's annual report, over half of its workforce, amounting to 300,000 employees, have been trained in generative AI, with a goal of training all staff by 2025.

The investment in GenAI training by IT and consulting firms pivots towards the importance of staying ahead in the rapidly evolving technological landscape. By equipping their employees with essential AI skills, these companies aim to enhance their capabilities, drive innovation, and maintain a competitive edge in the market. As the demand for AI expertise grows, these training programs will play a crucial role in shaping the future of the industry.


 

The Dual Landscape of LLMs: Open vs. Closed Source

 

AI has emerged as a transformative force, reshaping industries, influencing decision-making processes, and fundamentally altering how we interact with the world. 

The field of natural language processing and artificial intelligence has undergone a groundbreaking shift with the introduction of Large Language Models (LLMs). Trained on extensive text data, these models showcase the capacity to generate text, respond to questions, and perform diverse tasks. 

When contemplating the incorporation of LLMs into internal AI initiatives, a pivotal choice arises regarding the selection between open-source and closed-source LLMs. Closed-source options offer structured support and polished features, ready for deployment. Conversely, open-source models bring transparency, flexibility, and collaborative development. The decision hinges on a careful consideration of these unique attributes in each category. 

The introduction of ChatGPT, OpenAI's groundbreaking chatbot last year, played a pivotal role in propelling AI to new heights, solidifying its position as a driving force behind the growth of closed-source LLMs. Unlike closed-source LLMs like ChatGPT, open-source LLMs have yet to gain traction and interest from independent researchers and business owners. 

This can be attributed to the considerable operational expenses and extensive computational demands inherent in advanced AI systems. Beyond these factors, issues related to data ownership and privacy pose additional hurdles. Moreover, the disconcerting tendency of these systems to occasionally produce misleading or inaccurate information, commonly known as 'hallucination,' introduces an extra dimension of complexity to the widespread acceptance and reliance on such technologies. 

Still, the landscape of open-source models has witnessed a significant surge in experimentation. Deviating from the conventional, developers have ingeniously crafted numerous iterations of models like Llama, progressively attaining parity with, and in some cases, outperforming closed models across specific metrics. Standout examples in this domain encompass FinGPT, BioBert, Defog SQLCoder, and Phind, each showcasing the remarkable potential that unfolds through continuous exploration and adaptation within the open-source model ecosystem.

Apart from providing a space for experimentation, other points increasingly show that open-source LLMs are going to gain the same attention closed-source LLMs are getting now.

The open-source nature allows organizations to understand, modify, and tailor the models to their specific requirements. The collaborative environment nurtured by open-source fosters innovation, enabling faster development cycles. Additionally, the avoidance of vendor lock-in and adherence to industry standards contribute to seamless integration. The security benefits derived from community scrutiny and ethical considerations further bolster the appeal of open-source LLMs, making them a strategic choice for enterprises navigating the evolving landscape of artificial intelligence.

After carefully reviewing the strategies employed by LLM experts, it is clear that open-source LLMs provide a unique space for experimentation, allowing enterprises to navigate the AI landscape with minimal financial commitment. While a transition to closed source might become worthwhile with increasing clarity, the initial exploration of open source remains essential. To optimize advantages, enterprises should tailor their LLM strategies to follow this phased approach.

The Pros and Cons of Large Language Models

 


In recent years, the emergence of Large Language Models (LLMs), commonly referred to as Smart Computers, has ushered in a technological revolution with profound implications for various industries. As these models promise to redefine human-computer interactions, it's crucial to explore both their remarkable impacts and the challenges that come with them.

Smart Computers, or LLMs, have become instrumental in expediting software development processes. Their standout capability lies in the swift and efficient generation of source code, enabling developers to bring their ideas to fruition with unprecedented speed and accuracy. Furthermore, these models play a pivotal role in advancing artificial intelligence applications, fostering the development of more intelligent and user-friendly AI-driven systems. Their ability to understand and process natural language has democratized AI, making it accessible to individuals and organizations without extensive technical expertise. With their integration into daily operations, Smart Computers generate vast amounts of data from nuanced user interactions, paving the way for data-driven insights and decision-making across various domains.

Managing Risks and Ensuring Responsible Usage

However, the benefits of Smart Computers are accompanied by inherent risks that necessitate careful management. Privacy concerns loom large, especially regarding the accidental exposure of sensitive information. For instance, models like ChatGPT learn from user interactions, raising the possibility of unintentional disclosure of confidential details. Organisations relying on external model providers, such as Samsung, have responded to these concerns by implementing usage limitations to protect sensitive business information. Privacy and data exposure concerns are further accentuated by default practices, like ChatGPT saving chat history for model training, prompting the need for organizations to thoroughly inquire about data usage, storage, and training processes to safeguard against data leaks.

Addressing Security Challenges

Security concerns encompass malicious usage, where cybercriminals exploit Smart Computers for harmful purposes, potentially evading security measures. The compromise or contamination of training data introduces the risk of biased or manipulated model outputs, posing significant threats to the integrity of AI-generated content. Additionally, the resource-intensive nature of Smart Computers makes them prime targets for Distributed Denial of Service (DDoS) attacks. Organisations must implement proper input validation strategies, selectively restricting characters and words to mitigate potential attacks. API rate controls are essential to prevent overload and potential denial of service, promoting responsible usage by limiting the number of API calls for free memberships.

A Balanced Approach for a Secure Future

To navigate these challenges and anticipate future risks, organisations must adopt a multifaceted approach. Implementing advanced threat detection systems and conducting regular vulnerability assessments of the entire technology stack are essential. Furthermore, active community engagement in industry forums facilitates staying informed about emerging threats and sharing valuable insights with peers, fostering a collaborative approach to security.

All in all, while Smart Computers bring unprecedented opportunities, the careful consideration of risks and the adoption of robust security measures are essential for ensuring a responsible and secure future in the era of these groundbreaking technologies.





Microsoft ‘Cherry-picked’ Examples to Make its AI Seem Functional, Leaked Audio Revealed


According to a report by Business Insiders, Microsoft “cherry-picked” examples of generative AI’s output since the system would frequently "hallucinate" wrong responses. 

The intel came from a leaked audio file of an internal presentation on an early version of Microsoft’s Security Copilot a ChatGPT-like artificial intelligence platform that Microsoft created to assist cybersecurity professionals.

Apparently, the audio consists of a Microsoft researcher addressing the result of "threat hunter" testing, in which the AI examined a Windows security log for any indications of potentially malicious behaviour.

"We had to cherry-pick a little bit to get an example that looked good because it would stray and because it's a stochastic model, it would give us different answers when we asked it the same questions," said Lloyd Greenwald, a Microsoft Security Partner giving the presentation, as quoted by BI.

"It wasn't that easy to get good answers," he added.

Security Copilot

Security Copilot, like any chatbot, allows users to enter their query into a chat window and receive responses as a customer service reply. Security Copilot is largely built on OpenAI's GPT-4 large language model (LLM), which also runs Microsoft's other generative AI forays like the Bing Search assistant. Greenwald claims that these demonstrations were "initial explorations" of the possibilities of GPT-4 and that Microsoft was given early access to the technology.

Similar to Bing AI in its early days, which responded so ludicrous that it had to be "lobotomized," the researchers claimed that Security Copilot often "hallucinated" wrong answers in its early versions, an issue that appeared to be inherent to the technology. "Hallucination is a big problem with LLMs and there's a lot we do at Microsoft to try to eliminate hallucinations and part of that is grounding it with real data," Greenwald said in the audio, "but this is just taking the model without grounding it with any data."

The LLM Microsoft used to build Security Pilot, GPT-4, however it was not trained on cybersecurity-specific data. Rather, it was utilized directly out of the box, depending just on its massive generic dataset, which is standard.

Cherry on Top

Discussing other queries in regards to security, Greenwald revealed that, "this is just what we demoed to the government."

However, it is unclear whether Microsoft used these “cherry-picked” examples in its to the government and other potential customers – or if its researchers were really upfront about the selection process of the examples.

A spokeswoman for Microsoft told BI that "the technology discussed at the meeting was exploratory work that predated Security Copilot and was tested on simulations created from public data sets for the model evaluations," stating that "no customer data was used."  

Gemini: Google Launches its Most Powerful AI Software Model


Google has recently launched Gemini, its most powerful generative AI software model to date. And since the model is designed in three different sizes, Gemini may be utilized in a variety of settings, including mobile devices and data centres.

Google has been working on the development of the Gemini large language model (LLM) for the past eight months and just recently provided access to its early versions to a small group of companies. This LLM is believed to be giving head-to-head competition to other LLMs like Meta’s Llama 2 and OpenAI’s GPT-4. 

The AI model is designed to operate on various formats, be it text, image or video, making the feature one of the most significant algorithms in Google’s history.

In a blog post, Google CEO Sundar Pichai wrote, “This new era of models represents one of the biggest science and engineering efforts we’ve undertaken as a company.”

The new LLM, also known as a multimodal model, is capable of various methods of input, like audio, video, and images. Traditionally, multimodal model creation involves training discrete parts for several modalities and then piecing them together.

“These models can sometimes be good at performing certain tasks, like describing images, but struggle with more conceptual and complex reasoning,” Pichai said. “We designed Gemini to be natively multimodal, pre-trained from the start on different modalities. Then we fine-tuned it with additional multimodal data to further refine its effectiveness.”

Google also unveiled the Cloud TPU v5p, its most potent ASIC chip, in tandem with the launch. This chip was created expressly to meet the enormous processing demands of artificial intelligence. According to the company, the new processor can train LLMs 2.8 times faster than Google's prior TPU v4.

For ChatGPT and Bard, two examples of generative AI chatbots, LLMs are the algorithmic platforms.

The Cloud TPU v5e, which touted 2.3 times the price performance over the previous generation TPU v4, was made generally available by Google earlier last year. The TPU v5p is significantly faster than the v4, but it costs three and a half times as much./ Google’s new Gemini LLM is now available in some of Google’s core products. For example, Google’s Bard chatbot is using a version of Gemini Pro for advanced reasoning, planning, and understanding. 

Developers and enterprise customers can use the Gemini API in Vertex AI or Google AI Studio, the company's free web-based development tool, to access Gemini Pro as of December 13. Further improvements to Gemini Ultra, including thorough security and trust assessments, led Google to announce that it will be made available to a limited number of users in early 2024, ahead of developers and business clients.