Search This Blog

Powered by Blogger.

Blog Archive

Labels

About Me

Showing posts with label Quantum Computers. Show all posts

Quantum Computers Might Put Satellites at Risk — Here's What That Means for Us

 



Satellites play a quiet but essential role in our everyday routines. From helping airplanes land safely to guiding us with GPS, giving us internet access, and helping during emergencies — satellites support many things we rely on. But this system could be at risk due to a new kind of technology: quantum computers.

Quantum computers are not just upgraded versions of the computers we use today. They follow a completely different set of rules, based on quantum physics. Even though they’re still in development, researchers believe that once these machines are fully ready, they will be able to solve problems regular computers can’t handle — at much faster speeds.

For example, some tasks that would take current computers millions of years could be completed in minutes by a quantum computer. While we don’t know exactly when they will become practical, scientists are making real progress in building and improving them.

These powerful machines could bring huge benefits in science, medicine, and climate research. They could help us design better medicines, understand future climate changes, or create new materials. But along with these benefits, there’s also a serious danger — they could break the codes that protect our digital systems.

Right now, things like satellite signals, online banking, and private messages are protected by encryption. These protections are based on difficult math problems that regular computers can't easily solve. But quantum computers could solve them quickly, putting private and secure data at risk.

Satellites might seem untouchable because they’re far above the Earth. But with technology becoming cheaper and more available, skilled hackers or rival nations could try to intercept their signals or send fake instructions. Attacks like these are already possible today.

That’s why experts around the world are working on a new type of digital protection, called post-quantum cryptography. These advanced systems are being developed to resist attacks from quantum computers. Some governments, like in the UK, have already set goals to switch all systems to this stronger security by 2035.

Unlike phones or laptops, satellites can’t be easily updated once they’re in space. That’s why it’s important for all new satellites to be built with quantum-safe protections from the beginning. This will also help as more satellites start working together in groups to support different services.

If we don’t act soon, future quantum computers might be able to read or change the data that satellites send. This could interrupt GPS, affect emergency responses, or even create security threats for entire countries.

To stop this from happening, scientists, engineers, governments, and global organizations must work together. The good news is that steps are already being taken. By preparing now, we can make sure our satellite systems stay secure in the quantum future.

Quantum Computers Threaten to Breach Online Security in Minutes

 

A perfect quantum computer could decrypt RSA-2048, our current strongest encryption, in 10 seconds. Quantum computing employs the principle of quantum physics to process information using quantum bits (qubits) rather than standard computer bits. Qubits can represent both states at the same time, unlike traditional computers, which employ bits that are either 0 or 1. This capacity makes quantum computers extremely effective in solving complicated problems, particularly in cryptography, artificial intelligence, and materials research. 

While this computational leap opens up incredible opportunities across businesses, it also raises serious security concerns. When quantum computers achieve their full capacity, they will be able to break through standard encryption methods used to safeguard our most sensitive data. While the timescale for commercial availability of fully working quantum computers is still uncertain, projections vary widely.

The Boston Consulting Group predicts a significant quantum advantage between 2030 and 2040, although Gartner believes that developments in quantum computing could begin to undermine present encryption approaches as early as 2029, with complete vulnerability by 2034. Regardless of the precise timetable, the conclusion is unanimous: the era of quantum computing is quickly approaching. 

Building quantum resilience 

To address this impending threat, organisations must: 

  • Adopt new cryptographic algorithms that are resistant against impending quantum attacks, such as post-quantum cryptography (PQC). The National Institute of Standards and Technology (NIST) recently published its first set of PQC algorithm standards (FIPS 203, FIPS 204, and FIPS 205) to assist organisations in safeguarding their data from quantum attacks. 
  • Upgrades will be required across the infrastructure. Develop crypto agility to adapt to new cryptographic methods without requiring massive system overhauls as threats continue to evolve. 

This requires four essential steps: 

Discover and assess: Map out where your organisation utilises cryptography and evaluate the quantum threats to its assets. Identify the crown jewels and potential business consequences. 

Strategise: Determine the current cryptography inventory, asset lives against quantum threat timelines, quantum risk levels for essential business assets, and create an extensive PQC migration path. 

Modernise: Implement quantum-resilient algorithms while remaining consistent with overall company strategy.

Enhance: Maintain crypto agility by providing regular updates, asset assessments, modular procedures, continual education, and compliance monitoring. 

The urgency to act 

In the past, cryptographic migrations often took more than ten years to finish. Quantum-resistant encryption early adopters have noticed wide-ranging effects, such as interoperability issues, infrastructure rewrites, and other upgrading challenges, which have resulted in multi-year modernisation program delays. 

The lengthy implementation period makes getting started immediately crucial, even though the shift to PQC may be a practical challenge given its extensive and dispersed distribution throughout the digital infrastructure. Prioritising crypto agility will help organisations safeguard critical details before quantum threats materialise.

Quantum Computing Meets AI: A Lethal Combination

 

Quantum computers are getting closer to Q-day — the day when they will be able to crack existing encryption techniques — as we continue to assign more infrastructure functions to artificial intelligence (AI). This could jeopardise autonomous control systems that rely on AI and ML for decision-making, as well as the security of digital communications. 

As AI and quantum converge to reveal remarkable novel technologies, they will also combine to develop new attack vectors and quantum cryptanalysis.

How far off is this threat?

For major organisations and governments, the transition to post-quantum cryptography (PQC) will take at least ten years, if not much more. Since the last encryption standard upgrade, the size of networks and data has increased, enabling large language models (LLMs) and related specialised technologies. 

While generic versions are intriguing and even enjoyable, sophisticated AI will be taught on expertly picked data to do specialised tasks. This will quickly absorb all of the previous research and information created, providing profound insights and innovations at an increasing rate. This will complement, not replace, human brilliance, but there will be a disruptive phase for cybersecurity.

If a cryptographically relevant quantum computer becomes available before PQC is fully deployed, the repercussions are unknown in the AI era. Regular hacking, data loss, and even disinformation on social media will bring back memories of the good old days before AI driven by evil actors became the main supplier of cyber carcinogens.

When AI models are hijacked, the combined consequence of feeding live AI-controlled systems personalised data with malicious intent will become a global concern. The debate in Silicon Valley and political circles is already raging over whether AI should be allowed to carry out catastrophic military operations. Regardless of existing concerns, this is undoubtedly the future. 

However, most networks and economic activity require explicit and urgent defensive actions. To take on AI and quantum, critical infrastructure design and networks must advance swiftly and with significantly increased security. With so much at stake and new combined AI-quantum attacks unknown, one-size-fits-all upgrades to libraries such as TLS will not suffice. 

Internet 1.0 was built on old 1970s assumptions and limitations that predated modern cloud technology and its amazing redundancy. The next version must be exponentially better, anticipating the unknown while assuming that our current security estimations are incorrect. The AI version of Stuxnet should not surprise cybersecurity experts because the previous iteration had warning indications years ago.

Chinese Quantum Computer Breaks Advanced Military Encryption


 

According to Chinese scientists at Shanghai University, a quantum computer from the Canadian company D-Wave has been demonstrated to be capable of breaking a popular encryption scheme that has been used for many years. A new study shows that it is capable of attacking Rivest-Shamir-Adleman (RSA) encryption, which is used by web browsers, VPNs, email services, and chips of companies such as Samsung and LG, among others. 

The Advanced Encryption Standard (AES), which was adopted by the US government in 2001, can also be hacked by this tool. According to Chinese researchers, there is a real and substantial threat to classical cryptography, which is widely used in financial and military sectors as well as secure communication networks. SCMP published a report last week stating that the researchers utilized a quantum computer known as a D-Wave to mount the first quantum attacks on well-established cryptographic algorithms using quantum computing. 

There are some substitution-permutation-network (SPN) algorithms that can be found in widely used standards such as Rivest-Shamir-Adleman (RSA) and Advanced Encryption Standard (AES), which are both cryptographic algorithms classed as substitution-permutation networks (SPNs). While general-purpose quantum computing is still a long way from being fully operational, there has been a lot of research occurring in this area as well as in specialised quantum computing. 

Modern cryptography, though, should not be considered to be at risk from quantum computing as it does not pose an immediate threat. Professor Wang Chao, a colleague of mine at the Shanghai University, was also part of the team that successfully exploited the quantum computers which were produced by D-Wave Systems, a Canadian company, to crack cryptographic algorithms as part of a new research paper. It is the team of Wang and his students that claim that this is one of the first times that a real quantum computer has presented a substantial threat to fully-scaled SPN-structured algorithms that are used today. 


However, even though the researchers were not able to crack specific passcodes, they warn that quantum computers might be able to challenge modern encryption systems within the next few years. A quantum computer, which exploits quantum tunnelling and annealing to solve complex problems with higher efficiency and accuracy, operates by principles completely different from classical computers. As reported by the SCMP, Wang's team merged quantum techniques with conventional mathematical methods to develop an algorithm capable of breaching algorithms such as Present, Gift-64, and Rectangle designed to evade quantum techniques. 

Despite this breakthrough in quantum computing, the researchers acknowledge certain limitations currently holding the technology back, such as hardware immaturity and interference caused by the environment, which are currently preventing its full potential from being realized. Because of the sensitive nature of the research, Wang did not elaborate further on the findings. Researchers from Shanghai University, led by Wang Chao, have reportedly made significant strides in attacking military-grade encryption using quantum computing technology. 

Their efforts targeted Substitution-Permutation Network (SPN) algorithms, including Present, Gift-64, and Rectangle—systems that form the backbone of the Advanced Encryption Standard (AES). AES-256, in particular, is frequently cited as "military-grade" encryption and is believed to offer resistance against quantum computing attacks. 

However, the specific methods employed by Wang and his team to break these encryption systems remain unclear. In an interview with the South China Morning Post, Wang declined to provide further details, citing the sensitivity of the research. Despite this, the researchers have indicated that their work represents a substantial breakthrough. They claim that, for the first time, a quantum computer has posed a "real and substantial" threat to multiple full-scale SPN-structured algorithms currently in use. This was outlined in a peer-reviewed paper published in the Chinese Journal of Computers, a Mandarin-language journal. 

The paper highlights the potential risk quantum computing now poses to modern encryption standards. While many existing quantum systems are not yet considered advanced enough to threaten contemporary cryptology, this research suggests that the timeline for quantum machines to break widely used cryptographic algorithms may be shorter than previously expected. The researchers warned that the ability to crack these codes is closer than ever before. 

Currently, most general-purpose quantum systems are still in the developmental stages, and it is widely believed that practical quantum computers capable of breaking modern encryption systems are several years away. D-Wave Systems, which claims to be the world’s first commercial quantum computer supplier, counts major organizations like Lockheed Martin, NASA, and Google among its early adopters. Despite these advancements, many cryptography experts are working to develop "quantum-proof" encryption methods to safeguard against future risks posed by more powerful quantum machines. 

Quantum computers have the potential to solve complex problems that traditional computers cannot, and in the long term, they could become capable of breaking most public-key encryption algorithms. This has spurred global efforts to future-proof cryptographic systems against the eventual rise of fully capable quantum computing technologies.