The immense computational power that quantum computing offers raises significant concerns, particularly around its potential to compromise private keys that secure digital interactions. Among the most pressing fears is its ability to break the private keys safeguarding cryptocurrency wallets.
While this threat is genuine, it is unlikely to materialize overnight. It is, however, crucial to examine the current state of quantum computing in terms of commercial capabilities and assess its potential to pose a real danger to cryptocurrency security.
Before delving into the risks, it’s essential to understand the basics of quantum computing. Unlike classical computers, which process information using bits (either 0 or 1), quantum computers rely on quantum bits, or qubits. Qubits leverage the principles of quantum mechanics to exist in multiple states simultaneously (0, 1, or both 0 and 1, thanks to the phenomenon of superposition).
One of the primary risks posed by quantum computing stems from Shor’s algorithm, which allows quantum computers to factor large integers exponentially faster than classical algorithms. The security of several cryptographic systems, including RSA, relies on the difficulty of factoring large composite numbers. For instance, RSA-2048, a widely used cryptographic key size, underpins the private keys used to sign and authorize cryptocurrency transactions.
Breaking RSA-2048 with today’s classical computers, even using massive clusters of processors, would take billions of years. To illustrate, a successful attempt to crack RSA-768 (a 768-bit number) in 2009 required years of effort and hundreds of clustered machines. The computational difficulty grows exponentially with key size, making RSA-2048 virtually unbreakable within any human timescale—at least for now.
Commercial quantum computing offerings, such as IBM Q System One, Google Sycamore, Rigetti Aspen-9, and AWS Braket, are available today for those with the resources to use them. However, the number of qubits these systems offer remains limited — typically only a few dozen. This is far from sufficient to break even moderately sized cryptographic keys within any realistic timeframe. Breaking RSA-2048 would require millions of years with current quantum systems.
Beyond insufficient qubit capacity, today’s quantum computers face challenges in qubit stability, error correction, and scalability. Additionally, their operation depends on extreme conditions. Qubits are highly sensitive to electromagnetic disturbances, necessitating cryogenic temperatures and advanced magnetic shielding for stability.
Unlike classical computing, quantum computing lacks a clear equivalent of Moore’s Law to predict how quickly its power will grow. Google’s Hartmut Neven proposed a “Neven’s Law” suggesting double-exponential growth in quantum computing power, but this model has yet to consistently hold up in practice beyond research and development milestones.
Hypothetically, achieving double-exponential growth to reach the approximately 20 million physical qubits needed to crack RSA-2048 could take another four years. However, this projection assumes breakthroughs in addressing error correction, qubit stability, and scalability—all formidable challenges in their own right.
While quantum computing poses a theoretical threat to cryptocurrency and other cryptographic systems, significant technical hurdles must be overcome before it becomes a tangible risk. Current commercial offerings remain far from capable of cracking RSA-2048 or similar key sizes. However, as research progresses, it is crucial for industries reliant on cryptographic security to explore quantum-resistant algorithms to stay ahead of potential threats.
Asia-Pacific (APAC) enters 2025 with serious cybersecurity concerns as new technologies such as artificial intelligence (AI) and quantum computing are now posing more complex threats. Businesses and governments in the region are under increased pressure to build stronger defenses against these rapidly evolving risks.
How AI is Changing Cyberattacks
AI is now a primary weapon for cybercriminals, who can now develop more complex attacks. One such alarming example is the emergence of deepfake technology. Deepfakes are realistic but fake audio or video clips that can mislead people or organizations. Recently, deepfakes were used in political disinformation campaigns during elections in countries such as India and Indonesia. In Hong Kong, cybercriminals used deepfake technology to impersonate individuals and steal $25 million from a company. Audio-based deepfakes, and in particular, voice-cloning scams, will likely be used much more by hackers. It means that companies and individuals can be scammed with fake voice recordings, which would increase when this technology gets cheaper and becomes widely available. As described by Simon Green, the cybersecurity leader, this situation represents a "perfect storm" of AI-driven threats in APAC.
The Quantum Computing Threat
Even in its infancy, quantum computing threatens future data security. One of the most pressing is a strategy called "harvest now, decrypt later." Attackers will harvest encrypted data now, planning to decrypt it later when quantum technology advances enough to break current encryption methods.
The APAC region is moving at the edge of quantum technology development. Places like India, Singapore, etc., and international giants like IBM and Microsoft continue to invest so much in such technology. Their advancement is reassuring but also alarms people about having sensitive information safer. Experts speak about the issue of quantum resistant encryption to fend off future threat risks.
With more and more companies embracing AI-powered tools such as Microsoft Copilot, the emphasis on data security is becoming crucial. Companies have now shifted to better management of their data along with compliance in new regulations in order to successfully integrate AI within their operations. According to a data expert Max McNamara, robust security measures are imperative to unlock full potential of AI without compromising the privacy or safety.
To better address the intricate nature of contemporary cyberattacks, many cybersecurity experts suggest unified security platforms. Integrated systems combine and utilize various instruments and approaches used to detect threats and prevent further attacks while curtailing costs as well as minimizing inefficiencies.
The APAC region is now at a critical point for cybersecurity as threats are administered more minutely. Businesses and governments can be better prepared for the challenges of 2025 by embracing advanced defenses and having the foresight of technological developments.