Search This Blog

Powered by Blogger.

Blog Archive

Labels

Footer About

Footer About

Labels

Showing posts with label AI security risks. Show all posts

Promptware Threats Turn LLM Attacks Into Multi-Stage Malware Campaigns

 

Large language models are now embedded in everyday workplace tasks, powering automated support tools and autonomous assistants that manage calendars, write code, and handle financial actions. As these systems expand in capability and adoption, they also introduce new security weaknesses. Experts warn that threats against LLMs have evolved beyond simple prompt tricks and now resemble coordinated cyberattacks, carried out in structured stages much like traditional malware campaigns. 

This growing threat category is known as “promptware,” referring to malicious activity designed to exploit vulnerabilities in LLM-based applications. It differs from basic prompt injection, which researchers describe as only one part of a broader and more serious risk. Promptware follows a deliberate sequence: attackers gain entry using deceptive prompts, bypass safety controls to increase privileges, establish persistence, and then spread across connected services before completing their objectives.  

Because this approach mirrors conventional malware operations, long-established cybersecurity strategies can still help defend AI environments. Rather than treating LLM attacks as isolated incidents, organizations are being urged to view them as multi-phase campaigns with multiple points where defenses can interrupt progress.  

Researchers Ben Nassi, Bruce Schneier, and Oleg Brodt—affiliated with Tel Aviv University, Harvard Kennedy School, and Ben-Gurion University—argue that common assumptions about LLM misuse are outdated. They propose a five-phase model that frames promptware as a staged process unfolding over time, where each step enables the next. What may appear as sudden disruption is often the result of hidden progress through earlier phases. 

The first stage involves initial access, where malicious prompts enter through crafted user inputs or poisoned documents retrieved by the system. The next stage expands attacker control through jailbreak techniques that override alignment safeguards. These methods can include obfuscated wording, role-play scenarios, or reusable malicious suffixes that work across different model versions. 

Once inside, persistence becomes especially dangerous. Unlike traditional malware, which often relies on scheduled tasks or system changes, promptware embeds itself in the data sources LLM tools rely on. It can hide payloads in shared repositories such as email threads or corporate databases, reactivating when similar content is retrieved later. An even more serious form targets an agent’s memory directly, ensuring malicious instructions execute repeatedly without reinfection. 

The Morris II worm illustrates how these attacks can spread. Using LLM-based email assistants, it replicated by forcing the system to insert malicious content into outgoing messages. When recipients’ assistants processed the infected messages, the payload triggered again, enabling rapid and unnoticed propagation. Experts also highlight command-and-control methods that allow attackers to update payloads dynamically by embedding instructions that fetch commands from remote sources. 

These threats are no longer theoretical, with promptware already enabling data theft, fraud, device manipulation, phishing, and unauthorized financial transactions—making AI security an urgent issue for organizations.

Grok AI Faces Global Backlash Over Nonconsensual Image Manipulation on X

 

A dispute over X's internal AI assistant, Grok, is gaining attention - questions now swirl around permission, safety measures online, yet also how synthetic media tools can be twisted. This tension surfaced when Julie Yukari, a musician aged thirty-one living in Rio de Janeiro, posted a picture of herself unwinding with her cat during New Year’s Eve celebrations. Shortly afterward, individuals on the network started instructing Grok to modify that photograph, swapping her outfit for skimpy beach attire through digital manipulation. 

What started as skepticism soon gave way to shock. Yukari had thought the system wouldn’t act on those inputs - yet it did. Images surfaced, altered, showing her with minimal clothing, spreading fast across the app. She called the episode painful, a moment that exposed quiet vulnerabilities. Consent vanished quietly, replaced by algorithms working inside familiar online spaces. 

A Reuters probe found that Yukari’s situation happens more than once. The organization uncovered multiple examples where Grok produced suggestive pictures of actual persons, some seeming underage. No reply came from X after inquiries about the report’s results. Earlier, xAI - the team developing Grok - downplayed similar claims quickly, calling traditional outlets sources of false information. 

Across the globe, unease is growing over sexually explicit images created by artificial intelligence. Officials in France have sent complaints about X to legal authorities, calling such content unlawful and deeply offensive to women. A similar move came from India’s technology ministry, which warned X it did not stop indecent material from being made or shared online. Meanwhile, agencies in the United States, like the FCC and FTC, chose silence instead of public statements. 

A sudden rise in demands for Grok to modify pictures into suggestive clothing showed up in Reuters' review. Within just ten minutes, over one00 instances appeared - mostly focused on younger females. Often, the system produced overt visual content without hesitation. At times, only part of the request was carried out. A large share vanished quickly from open access, limiting how much could be measured afterward. 

Some time ago, image-editing tools driven by artificial intelligence could already strip clothes off photos, though they mostly stayed on obscure websites or required payment. Now, because Grok is built right into a well-known social network, creating such fake visuals takes almost no work at all. Warnings had been issued earlier to X about launching these kinds of features without tight controls. 

People studying tech impacts and advocacy teams argue this situation followed clearly from those ignored alerts. From a legal standpoint, some specialists claim the event highlights deep flaws in how platforms handle harmful content and manage artificial intelligence. Rather than addressing risks early, observers note that X failed to block offensive inputs during model development while lacking strong safeguards on unauthorized image creation. 

In cases such as Yukari’s, consequences run far beyond digital space - emotions like embarrassment linger long after deletion. Although aware the depictions were fake, she still pulled away socially, weighed down by stigma. Though X hasn’t outlined specific fixes, pressure is rising for tighter rules on generative AI - especially around responsibility when companies release these tools widely. What stands out now is how little clarity exists on who answers for the outcomes.

Generative AI Adoption Stalls as Enterprises Face Data Gaps, Security Risks, and Budget Constraints

 

Many enterprises are hitting roadblocks in deploying generative AI despite a surge in vendor investments. The primary challenge lies in fragmented and unstructured data, which is slowing down large-scale adoption. While technology providers continue to ramp up funding, organizations are cautious due to security risks, budget concerns, and a shortage of skilled AI talent.

“Enterprise data wasn’t up to the challenge,” Gartner Distinguished VP Analyst John-David Lovelock told CIO Dive earlier this year. Gartner projects that vendor spending will fuel a 76% increase in generative AI investments in 2025.

The pilot phase of AI revealed a significant mismatch between organizational ambitions and data maturity. Pluralsight’s March report, led by Chief Product and Technology Officer Chris McClellen, found that over 50% of companies lacked the readiness to meet AI’s technical and operational demands. Six months later, progress remains limited.

A Ponemon Institute survey showed that more than half of respondents still rank AI as a top priority. However, nearly one in three IT and security leaders cited budgetary constraints as a barrier.

“AI is mission-critical, but most organizations aren’t ready to support it,” said Shannon Bell, Chief Digital Officer at OpenText. “Without trusted, well-governed information, AI can’t deliver on its promise.”

The dual nature of AI poses both opportunities and risks for enterprises. Over 50% of organizations struggle to mitigate AI-related security and compliance risks, with 25% pointing to poor alignment between AI strategies and IT or security functions.

Despite this, AI is increasingly being integrated into cybersecurity strategies. Half of organizations already use AI in their security stack, and 39% report that generative AI enhances threat detection and alert analysis. Banking, in particular, is leveraging the technology—KPMG’s April survey of 200 executives found that one-third of banks are piloting generative AI-powered fraud detection and anomaly detection systems.