Search This Blog

Powered by Blogger.

Blog Archive

Labels

Showing posts with label CVE. Show all posts

Drop in ransomware payment, 2024 Q1 sees a record low of 28%

 

Ransomware actors have encountered a rocky start in 2024, as indicated by statistics from cybersecurity firm Coveware. Companies are increasingly refusing to acquiesce to extortion demands, resulting in a record low of only 28% of companies paying ransom in the first quarter of the year. This figure marks a notable decrease from the 29% reported in the previous quarter of 2023. Coveware's data underscores a consistent trend since early 2019, showing a diminishing rate of ransom payments. 

The decline in ransom payments can be attributed to several factors. Organizations are implementing more sophisticated protective measures to fortify their defenses against ransomware attacks. Additionally, mounting legal pressure discourages companies from capitulating to cybercriminals' financial demands. Moreover, ransomware operators frequently breach promises not to disclose or sell stolen data even after receiving payment, further eroding trust in the extortion process. 

Despite the decrease in the payment rate, the overall amount paid to ransomware actors has surged to unprecedented levels. According to a report by Chainalysis, ransomware payments reached a staggering $1.1 billion in the previous year. This surge in payments is fueled by ransomware gangs targeting a larger number of organizations and demanding higher ransom amounts to prevent the exposure of stolen data and provide victims with decryption keys. 

In the first quarter of 2024, Coveware reports a significant 32% quarter-over-quarter drop in the average ransom payment, which now stands at $381,980. Conversely, the median ransom payment has seen a 25% quarter-over-quarter increase, reaching $250,000. This simultaneous decrease in the average and rise in the median ransom payments suggest a shift towards more moderate ransom demands, with fewer high-value targets succumbing to extortion. Examining the initial infiltration methods used by ransomware operators reveals a rising number of cases where the method is unknown, accounting for nearly half of all reported cases in the first quarter of 2024. 

Among the identified methods, remote access and vulnerability exploitation play a significant role, with certain CVE flaws being widely exploited by ransomware operators. The recent disruption of the LockBit operation by the FBI has had a profound impact on the ransomware landscape, reflected in Coveware's attack statistics. This law enforcement action has not only disrupted major ransomware gangs but has also led to payment disputes and exit scams, such as those witnessed with BlackCat/ALPHV. 

 Furthermore, these law enforcement operations have eroded the confidence of ransomware affiliates in ransomware-as-a-service (RaaS) operators, prompting many affiliates to operate independently. Some affiliates have even opted to exit cybercrime altogether, fearing the increased risk of legal consequences and the potential loss of income. Amidst these developments, one ransomware strain stands out as particularly active: Akira. 

This strain has remained the most active ransomware in terms of attacks launched in the first quarter of the year, maintaining its position for nine consecutive months. According to the FBI, Akira is responsible for breaches in at least 250 organizations and has amassed $42 million in ransom payments. Implementing robust protective measures, staying informed about emerging threats, and fostering collaboration with law enforcement agencies are essential strategies for mitigating the risks posed by ransomware attacks and safeguarding sensitive data from malicious actors.

NIST to establish consortium that can collaborate on research to improve the NVD

 

The US National Institute of Standards and Technology (NIST) is to establish  a consortium to partner with NIST in responding to challenges presented by the current and expected growth in CVEs, such as through development of a way to automate some analysis activities.

The official announcement came during VulnCon, a cybersecurity conference hosted by the Forum of Incident Response and Security Teams (FIRST), held from March 25 to 27, 2024. Tanya Brewer, the NVD program manager, disclosed the news, addressing the longstanding speculation surrounding the fate of the NVD. 

In February 2024, NIST halted the enrichment of Common Vulnerabilities and Exposures (CVEs) data on the NVD website, leading to a backlog of unanalyzed vulnerabilities. This development raised alarms among security researchers and industry professionals, as the NVD plays a critical role in identifying and addressing software vulnerabilities. 

The implications of the NVD backlog are profound, potentially impacting the security posture of organisations worldwide. Without timely analysis and remediation of vulnerabilities, companies face increased risks of cyberattacks and data breaches. The situation prompted some security companies to explore alternative solutions to supplement the NVD's functions temporarily. Amidst the challenges, speculation swirled regarding the underlying causes of the NVD's issues. 

Budget constraints, contractual changes, and discussions around updating vulnerability standards were among the factors cited. The uncertainty underscored the need for transparency and clarity from NIST regarding the future of the NVD. In response to the concerns, Brewer acknowledged the challenges faced by the NVD program, attributing them to a "perfect storm" of circumstances. Despite the setbacks, NIST remains committed to addressing the issues and revitalizing the NVD. 

Plans for the establishment of an NVD Consortium, aimed at fostering collaboration and innovation, signal a proactive approach to future management. Looking ahead, NIST aims to enhance the NVD's capabilities and processes within the next one to five years. Proposed initiatives include expanding partnerships, improving software identification methods, and leveraging automation to streamline CVE analysis. 

These efforts reflect a concerted push to modernize the NVD and ensure its relevance in an ever-evolving cybersecurity landscape. The announcement at VulnCon provided much-needed clarity and reassurance to the cybersecurity community. While challenges persist, the collaborative efforts of industry stakeholders and government agencies offer hope for a resilient and robust NVD ecosystem.

Hackers Exploit Flaw in Ray Framework to Breach Servers

 

The Ray framework, a tool for scaling AI and Python workloads in open source, has been found vulnerable to multiple flaws that enable hackers to take control of devices and pilfer sensitive data. Cybersecurity researchers from Oligo disclosed their discoveries about a new hacking campaign named “ShadowRay”.

Operating since early September 2023, ShadowRay targeted various sectors including education, cryptocurrency, and biopharma by exploiting five distinct vulnerabilities in Ray. Four of these vulnerabilities, identified as CVE-2023-6019, CVE-2023-6020, CVE-2023-6021, and CVE-2023-48023, were patched by Anyscale, the developer of Ray. However, the fifth vulnerability, labelled as a critical remote code execution (RCE) flaw and tracked as CVE-2023-48022, remained unaddressed.

Anyscale defended the unpatched vulnerability, stating that it was a deliberate decision rather than a bug, as Ray lacks built-in authentication. They indicated their intention to introduce authentication in a future release as part of a defense-in-depth strategy. Anyscale argued that exploitation of this RCE flaw would only be feasible in deployments deviating from their recommended network environment controls.

In contrast, Oligo criticized Anyscale's stance, highlighting that disputing the CVE left many developers unaware of potential security risks. They termed the unresolved CVE as a "shadow vulnerability", explaining that it could lead to breaches despite not being detected in static scans. 

Oligo observed numerous instances of the CVE-2023-48022 actively exploited in the wild, resulting in compromised Ray servers and the theft of sensitive data, including AI models and production database credentials, along with instances of cryptominer installations.


RCE Vulnerability patched in vm2 Sandbox

Researchers from Oxeye found a serious vm2 vulnerability (CVE-2022-36067) that has the highest CVSS score of 10.0. R&D executives, AppSec engineers, and security experts must make sure they rapidly repair the vm2 sandbox if they utilize it in their apps due to a new vulnerability known as SandBreak.

The most widely used Javascript sandbox library is vm2, which receives about 17.5 million downloads each month. It offers a widely used software testing framework that may synchronously execute untrusted code in a single process.

The Node.js functionality that allows vm2 maintainers to alter the call stack of failures in the software testing framework is the primary culprit in the vulnerability, which Oxeye's researchers have dubbed SandBreak.

According to senior security researcher Gal Goldshtein of Oxeye, "when examining the prior issues revealed to the vm2 maintainers, we observed an unusual technique: the bug reporter leveraged the error mechanism in Node.js to escape the sandbox."

Modern applications use sandboxes for a variety of functions, including inspecting attached files in email servers, adding an extra layer of protection in web browsers, and isolating running programs in some operating systems. Bypassing the vm2 sandbox environment, a hacker who takes advantage of this vulnerability would be able to execute shell commands on the computer hosting it.

The vm2 vulnerability can still have serious repercussions for apps that use vm2 without a fix due to the nature of the use cases for sandboxes. Given that this vulnerability does have the highest CVSS score and is quite well-known, its potential impact is both significant and extensive.

Nevertheless, an attacker might offer its alternative implementation of the prepareStackTrace technique and escape the sandbox because it did not cover all particular methods.

The researchers at Oxeye also were able to substitute their own implementation, which contained a unique prepareStackTrace function for the global Error object. When it was called, it would discover a CallSite object outside the sandbox, enabling the host to run any code.

Users are advised to upgrade as quickly as possible to the most recent version due to the vulnerability's serious severity and to reduce potential risks.


Middle East Targeted via Steganography

A hacktivist gang that has previously attacked an African country's stock exchange with malware and seized vast amounts of data is now focusing on the governments of several Middle Eastern countries.

ESET, a cybersecurity company, discovered Witchetty also known as LookingFrog for the first time in April 2022. It is thought to be closely associated with the state-sponsored Chinese threat actor APT10 formerly known as Cicada. The gang is also regarded as TA410 personnel, who have previously been connected to strikes against American energy suppliers.

A threat actor identified as Witchetty was seen by Broadcom's Symantec Threat Hunter Team utilizing steganography to conceal an unknown backdoor in a Windows logo.

The new malware uses steganography, a method for hiding a message in an openly available document, to extract dangerous code from a bitmap image of a previous version of the Microsoft Windows logo.

In the campaign that Symantec found, Witchetty is utilizing steganography to conceal backdoor software that is XOR-encrypted in an outdated Windows logo bitmap picture.

"By disguising the payload in this way, the attackers were able to host it on a reliable, cost-free service. Downloads from reputable servers like GitHub are much less likely to cause concern than downloads from a command-and-control (C&C) server that is under the control of an attacker" the researchers stated.

Backdoor employment

The employment of another backdoor known as Stegmap is highlighted in Symantec's most recent investigation of attacks between February and September 2022, when the organization attacked the governments of two Middle Eastern countries as well as the stock exchange of an African nation. 

Like many backdoors, Stegmap includes a wide range of features that enable it to do file manipulation operations, download and run executables, stop processes, and alter the Windows Registry. The hackers updated their toolset for this effort to target the vulnerabilities, and they used steganography to shield their harmful payload from antivirus software.

By taking advantage of the Microsoft Exchange ProxyShell (CVE-2021-34473, CVE-2021-34523, and CVE-2021-31207) and ProxyLogon (CVE-2021-26855 and CVE-2021-27065) attack chains to drop web shells on susceptible servers, the threat actors acquire initial access to a network and launch the attack. 

According to the chronology of an attack on a Middle Eastern government organization, Witchetty maintained remote access for as long as six months and carried out a variety of post-exploitation activities, such as network enumeration and the installation of custom malware, up to September 1, 2022.

Governments and state institutions around the world, including those in Asia and Africa, continue to face active threats from TA410 and Witchetty. The best defense against such attacks is to implement security upgrades as soon as they are available. In the campaign that Symantec has identified, the hackers depend on last year's flaws to infiltrate the target network and take advantage of the subpar management of publicly accessible servers.



Major Vulnerabilities Found in Wireless LAN Devices in Airlines

The two major vulnerabilities were found in the series of the flexlan, a LAN device providing internet services in airlines. The Necrum security labs’ researchers Samy Younsi and Thomas Knudsen, initiated the research which led to tracking two critical vulnerabilities which were identified as CVE-2022-36158 and CVE-2022-36159. 

The vulnerabilities were detected in the Flexlan series named FXA3000 and FXA2000 and have been associated with a Japan-based firm known as Contec. 
 
The researchers said while considering the first vulnerability, that during the execution of reverse engineering on firmware, we found a hidden web page, which was not entailed in the list of wireless LAN manager interfaces. They also added that it simplifies the enforcement of the Linux command over the device with root privileges. The researchers mentioned that the first vulnerability gave access to all the system files along with the telnet port which allows to access the whole device.   
 
Regarding the second vulnerability, the researchers said, it makes use of hard-coded, weak cryptographic keys and backdoor accounts. While carrying out the research, the researchers were also able to recover and get access to a shadow file within a few minutes with the help of a brute-force attack. The file contained the hash of two users including root and users. 
 
The researchers explained the issue that the device owner is only able to change the password from the interface of the web admin as the root account is reserved for maintenance purposes by Contec. This allows the attacker with a root hard-coded password able to access all Flexlan FXA2000 and FXA3000 series effortlessly. 
 
With respect to the solutions, researchers emphasized the importance of mentioned to maintaining cyber security, with regard to the first Vulnerability. They said, “the hidden engineering web pages should be removed from all unfortified devices. As weak passwords make access easier for cyber attackers.” For the second vulnerability, the advisory commented, “the company should create new strong passwords, for every single device with the manufacturing process."

Atlassian Bitbucket: Vulnerability Spotted Inside Data Center

Bitbucket Server and Data Center users are being alerted by Atlassian about a major security vulnerability that may allow attackers to run arbitrary code on weak systems.

The most updated vulnerability that involves command injection affects several software product API endpoints and is identified as CVE-2022-36804. Given that it has a CVSS severity score of 9.9 out of a possible 10.0,  it can be concluded that the vulnerability is critical and needs to be fixed immediately.

According to an advisory from Atlassian, "A hacker with access to a public Bitbucket repository or with r permissions to a private one can execute arbitrary code by sending a malicious HTTP request."

Bitbucket is a Git-based code hosting service connected with Jira and a part of the business' DevOps solution. Bitbucket offers both free and paid options and supports an infinite number of private repositories.

All Bitbucket versions issued after 6.10.17 are impacted, thus "all instances that are operating any versions between 7.0.0 and 8.3.0 inclusive are affected by this vulnerability," according to Atlassian, which also alleges that the flaw was introduced in version 7.0.0 of Bitbucket.

Atlassian advises disabling public repositories using 'feature.public.access=false' as a temporary solution in situations where the patches cannot be applied immediately to stop unauthorized users from taking advantage of the problem.

It warned that "this can not be regarded a complete mitigation as an attacker with a user account could still succeed,", implying that hackers who already have legitimate credentials obtained through other ways could take advantage of it. 

It is advised that users of the affected software versions update as soon as possible to the most recent version in order to reduce security risks.

Max Garrett, a security researcher, disclosed CVE-2022-36804 to Atlassian via the company's bug bounty program on Bugcrowd and was rewarded with $6,000 for his discovery.

The teenage researcher tweeted yesterday that he will publish a proof-of-concept (PoC) attack for the problem in 30 days, allowing system administrators plenty of time to implement the now available remedies.

There is no guarantee that the significant RCE weakness won't be actively exploited more frequently before the PoC is released, but it is inevitable. Reverse engineering Atlassian's patch, according to Garrett, shouldn't be too challenging for knowledgeable hackers.

The motivation is there because remote code execution is the most dangerous type of vulnerability, allowing attackers to cause significant harm while evading all security protocols.

As a result, users of Bitbucket Server and Data Center are urged to install any security updates or mitigations as soon as they become available.


Secure Boot Vulnerabilities Impact Bootloaders, Systems Compromised


About Secure Boost Bugs

Bootloaders that were in majority of the systems made in the last 10 years have been impacted by Secure Bost bypass vulnerabilities. 

Secure Boot is a mechanism made to prevent a device's boot process from threats, to bypass it will allow an attacker to execute arbitrary code before the operating system can load. 

It allows installation of stealthy and persistent malware. The Secure Boot vulnerabilities were found in the Eurosoft (CVE-2022-34301) CVE-2022-34303, New Horizon Datasys (CVE-2022-34302), and CryptoPro Secure Disk for BitLocker (CVE-2022-34303) bootloaders. 

As per Eclypsium (company) bootloaders are found in almost every device made in the past 10 years, this includes ARM and x86-64 devices.

How does the bugs work?

The CryptoPro Secure Disk and Eurosoft bootloader bugs contain signed UEFI shells, the hackers are able to bypass Secure Boot by exploiting built-in capabilities. For these security loopholes, one can easily exploit automated startup scripts. 

According to Eclypsium the bootloader contains a built-in bypass for Secure Boot that leaves Secure Boot on but disables the Secure Boot checks. This bypass can further enable even more complex evasions such as disabling security handlers. 

In this case, an attacker would not need scripting commands, and could directly run arbitrary unsigned code. To exploit any of these bugs, a hacker must have admin or root privileges on the targeted Linux and Windows system. 

But the company said that there are many ways to get these permissions on a device. The flawed bootloaders are signed by Microsoft. As per an advisory issued by the CERT/CC at Carnegie Mellon University, the tech giant has been working with vendors to address the flaws and it has restricted the certificates linked with the affected bootloaders. 

"In 2020, Eclypsium disclosed the existence of a vulnerability named BootHole, which affected all operating systems that used the GRUB2 bootloader with Secure Boot. Some vendors rushed to release patches in response to BootHole, but they caused many systems," says Security Week. 


Zimbra Memcached Injection Bug Patched

According to SonarSource, an open-source alternative to email servers and collaboration platforms such as Microsoft Exchange. Since May 10, 2022, a patch has been released in Zimbra versions ZCS 9.0.0 Patch 24.1 and ZCS 8.8.15 Patch 31.1. Zimbra is utilized by organizations, governments, and financial institutions throughout the world. 

Unauthenticated attackers might contaminate an unwary victim's cache, according to Simon Scannell, a vulnerability researcher at Swiss security firm Sonar. The vulnerability has been assigned the number CVE-2022-27924 (CVSS: 7.5), and it has been described as a case of "Memcached poisoning with unauthorized access," which might allow an attacker to inject malicious commands and steal sensitive data. 

Since newline characters (\r\n) in untrusted user input were not escaped, attackers were able to inject arbitrary Memcached instructions into a targeted instance, causing cached entries to be overwritten. Memcached servers keep track of key/value pairs that may be created and retrieved using a simple text-based protocol and analyze data line by line. A malicious actor might alter the IMAP route entries for a known username by sending a specially crafted HTTP request to the susceptible Zimbra server, according to the researchers. When the genuine user logs in, the Nginx Proxy in Zimbra will send all IMAP communication, including the credentials in plain text, to the attacker. 

Knowing the victim's email address, and utilizing an IMAP client makes it easier for the attacker to abuse the vulnerability. A second attack technique allows users to circumvent the aforesaid constraints and steal credentials for any user with no involvement or knowledge of the Zimbra instance. This is accomplished through "Response Smuggling," a different approach that makes use of a web-based Zimbra client. Cross-site scripting (XSS) and SQL injection issues caused by a lack of input escaping "are well known and documented for decades," as per Scannell, but "other injection vulnerabilities can occur that are less well known and can have a catastrophic consequence." 

As a result Scannell, advises programmers to "be cautious of special characters that should be escaped when coping with technology where there is less documentation and research regarding potential vulnerabilities." The bug was discovered four months after Zimbra provided a hotfix for an XSS flaw that was exploited in a series of sophisticated spear-phishing efforts attributed to an undisclosed Chinese threat group.

Carrier's Industrial Access Control System has Critical Flaws

 

Carrier's LenelS2 HID Mercury access control system, which is widely used in healthcare, academic, transport, and federal buildings have eight zero-day vulnerabilities.

In a report shared by The Hacker News, Trellix security experts Steve Povolny and Sam Quinn wrote, "The vulnerabilities found to enable us to demonstrate the ability to remotely open and lock doors, manipulate alarms, and degrade logging and notification systems." 

The investigation begins at the hardware level; Researchers were able to change onboard components and connect with the device by using the manufacturer's built-in ports. 

They were able to gain root access to the device's operating system and extract its firmware for virtualization and vulnerability or other exploits using a combination of known and unique techniques. One of the issues (CVE-2022-31481) contains an unauthorized remote execution weakness with a CVSS severity rating of 10 out of 10. The following is the detailed list of flaws: 
  • Unauthenticated command injection vulnerability CVE-2022-31479. 
  • Unauthenticated denial-of-service vulnerability CVE-2022-31480.
  • CVSS 10 rated RCE vulnerability is CVE-2022-31481. 
  • Unauthenticated denial-of-service vulnerability CVE-2022-31482. 
  • An authenticated arbitrary file write vulnerability, CVE-2022-31483. 
  • Unauthenticated user modification vulnerability CVE-2022-31484.
  • Unauthenticated information spoofing vulnerability CVE-2022-31485. 
  • An authenticated command injection vulnerability, CVE-2022-31486 

Carrier has issued an alert in response to the revelation, which includes further details, mitigations, and firmware patches that consumers should apply right now. 

In locations where physical access to privileged facilities is required, LenelS2 is used to connect with more complicated building automation implementations. The following LenelS2 HID Mercury access or unauthorized access panels are affected: 
  • LNL-X2210 
  • LNL-X2220 
  • LNL-X3300 
  • LNL-X4420
  • LNL-4420 
  • S2-LP-1501 
  • S2-LP-1502 
  • S2-LP-2500, as well as 
  • S2-LP-4502 

According to a study conducted by IBM in 2021, the average cost of a physical data breach is 3.54 million dollars, with a detection time of 223 days. 

For companies that rely on access control systems to protect the security and safety of its facilities, the stakes are high. "ICS security presents unique issues," according to the US Cybersecurity and Infrastructure Security Agency (CISA). 

The increasing convergence of information technology (IT) and operational technology (OT) presents chances for exploitation that could result in catastrophic repercussions, including loss of life, economic damage, and disruption of society's National Critical Functions (NCFs)."

Consumers should be aware that while the vulnerabilities revealed recently may appear to have minimal impact created by hackers, critical infrastructure assaults have a significant impact on our everyday lives.

 New Confluence Remote Code Execution Flaw is Exploited by Cryptocurrency Miners

 

Atlassian has issued a security advisory on a severe unpatched remote code execution vulnerability that affects Confluence Server and Data Center products and is being actively abused in the field, according to the company. The CVE-2022-26134 vulnerability was found as an extensively exploited zero-day towards the end of May, and the vendor issued a patch on June 3, 2022. 

Several proof-of-concept (PoC) exploits for the CVE-2022-26134 bug have been made public. Following the disclosure of the RCE, Check Point Research (CPR) researchers observed a large number of exploitation attempts, with some of the malicious payloads used in the attacks being used as part of the same campaign carried by a crypto mining gang known as the "8220 gang" by doing bulk net scans to discover vulnerable Windows and Linux endpoints to plant miners. 

Miners are special-purpose programs that mine cryptocurrency like Monero for the threat actor using the host's available computational capabilities. Reduced server performance, increase hardware wear, greater operating costs, and even business disruption are all direct consequences of this action. These actors can also improve their attack at any time and dump more potent payloads because they have access to the system.

Multiple infection chains are used to target Linux and Windows operating systems. The attack starts with a specially crafted HTTP request which exploits CVE-2022-26134 and dumps a base64-encoded payload on both Linux and Windows platforms. The payload then downloads an executable, a Linux malware injects script and a Windows child process spawner. Both scenarios try to set up reboot persistence, then delete all current devices before activating the miner. 

The miner will deplete all system resources in both circumstances, therefore the "8220 gang" is aiming for maximum profit until the malware is uprooted, rather than silently mining on infected servers and attempting to remain undiscovered by using only a portion of the available processing capacity. Eventually, the Linux script looks for SSH keys on the host in an attempt to expand to other computers nearby. 

The web shell is believed to have been used to distribute two further web shells to disk, namely China Chopper and a bespoke file upload shell for exfiltrating arbitrary files to a remote server. The news comes within a year of another severe remote code execution issue in Atlassian Confluence (CVE-2021-26084, CVSS score: 9.8) was actively exploited in the open to install cryptocurrency miners on compromised servers (CVE-2021-26084, CVSS score: 9.8). 

"Attackers can get direct access to highly valuable systems by exploiting such type of vulnerability," Volexity stated. "Furthermore, because they lack the necessary monitoring or logging capabilities, these systems can be difficult to investigate."

SolarWinds Alerted About Attacks Targeting Web Help Desk Instances

 

SolarWinds alerted customers about attacks on Web Help Desk (WHD) instances that were exposed to the Internet and recommended they remove those from publicly accessible infrastructure (likely to prevent the exploitation of a potential security flaw). WHD is a helpdesk ticketing and IT inventory management software for businesses that aim to automate ticketing and IT asset management operations. 

SolarWinds stated, "A SolarWinds customer reported an external attempted attack on their instance of Web Help Desk (WHD) 12.7.5. The customer's endpoint detection and response (EDR) system blocked the attack and alerted the customer to the issue. In an abundance of caution, SolarWinds recommends all Web Help Desk customers whose WHD implementation is externally facing to remove it from your public (internet-facing) infrastructure until we know more." 

Customers who are unable to remove WHD instances from servers that are accessible to the Internet should install EDR software and monitor them for attack attempts. SolarWinds hasn't been able to replicate the scenario, the business is working with the customer to analyse the report. 

A SolarWinds spokesperson told BleepingComputer, "We received a report from one customer about an attempted attack that was not successful. While we are investigating this matter, we have also alerted other customers about this potential issue out of an abundance of caution. At this point, we have no reason to believe other customers were impacted." 

Although SolarWinds did not specify what tools or tactics were utilised in the attack, there are at least four security flaws that an attacker may use to target t an unpatched WHD instance: 
• Access Restriction Bypass Via Referrer Spoof - Business Logic Bypass Vulnerability (CVE-2021-32076) - Fixed in WHD 12.7.6 
• Enabled HTTP PUT & DELETE Methods (CVE-2021-35243) - Fixed in WHD 12.7.7 Hotfix 1 
• Hard-coded credentials allowing arbitrary HSQL queries execution (CVE-2021-35232) - Fixed in WHD 12.7.7 Hotfix 1 
• Sensitive Data Disclosure Vulnerability (CVE-2021-35251) - Fixed in WHD 12.7.8 

According to the CVE-2021-35251 advisory, attackers might use unsecured WHD instances to gain access to environmental details about the Web Help Desk installation, making the other three security flaws easier to exploit.

A Worldwide Fraud Campaign Used Targeted Links to Rob Millions of Dollars

 

Infrastructure overlaps tied to the TrickBot botnet can be seen in large-scale phishing activity employing hundreds of domains to steal information for Naver, a Google-like web platform in South Korea. The resources employed in this assault demonstrate the magnitude of the cybercriminal effort to gather login data to carry out attacks. 

Naver, like Google, offers a wide range of services, including web search, email, news, and the NAVER Knowledge iN online Q&A platform. Its credentials, in addition to granting access to regular user accounts, can also grant access to enterprise environments due to password reuse. 

Earlier this year, security researchers from cyber intelligence firm Prevailion began its inquiry using a domain name shared by Joe Sowik, mailmangecorp[.]us, which led to a "vast network of targeted phishing infrastructure designed to gather valid login credentials for Naver." Additionally, PACT analysts discovered similarities with the WIZARD SPIDER [a.k.a. TrickBot] network while researching the hosting infrastructure utilized to serve the Naver-themed phishing pages. 

The fraudsters enticed victims with phoney surveys and incentives purporting to be from well-known brands, the lure was meant to help the criminals steal victims' personal information and credit card information. Tens of millions of people in 91 countries, including the United States, Canada, South Korea, and Italy, were shown to have been targeted by the scammers.

To entice potential victims, the cybercriminals sent out invitations to participate in a survey, along with the promise of a prize if they completed it. Advertising on both legitimate and illegitimate websites, contextual advertising, SMS and email messages, and pop-up notifications were all used in the campaign. To develop trust with the victims, lookalike domains modeled after authentic ones were registered. 542 unique domains were linked to the operation, 532 of which were utilized for Naver-themed phishing. Authorities found the operator would register a group of web addresses linked to a single IP address using an email address.

According to the researchers, two Cobalt Strike beacon variants on Virus Total were linked to 23.81.246[.]131 as part of a campaign that used CVE-2021-40444 to spread Conti ransomware, a typical TrickBot payload. The end page's content is as personalized as possible to the victim's interests, with the customized link only accessible once, making detection significantly more difficult and enabling the scheme to last longer. 

The victim is also informed to be eligible for a prize and one must supply personal information such as one's complete name, email and physical addresses, phone number, and credit card information, including expiration date and CVV for the same. Prevalion believes one explanation that justifies the conclusions is cybercriminals should use an "infrastructure-as-a-service" model for their operations.

Businesse's Pascom Cloud Phone System Contains Severe RCE Flaws

 

Pascom's Cloud Phone System has been completely compromised since a combination of three unique vulnerabilities was discovered by security researchers. Daniel Eshetu of Ethiopian infosec firm Kerbit utilized a trio of less critical security issues to gain full pre-authenticated remote code execution (RCE) on the business-focused Voice over IP (VoIP) and generic communication platform. 

A path traversal vulnerability, a web server request forgery (SSRF) fault in an arbitrary piece of software, and a post-authentication RCE flaw were the three components of the successful exploit. 

The Pascom Cloud Phone Software is a complete collaboration and communication solution which enables enterprises to host and build up private telephone networks across several platforms, as well as manage, maintain, and upgrade virtual phone systems. 

According to the company's LinkedIn, "Pascom, which was founded in 1997 and is the creator of the unique pascom IP phone system software, has over 20 years of expertise providing custom VoIP telecommunications and network infrastructure solutions. By offering organizations a unique, highly professional software-based IP PBX solution, our VoIP phone systems help them add value to the communications."

An arbitrary path traversal flaw in the web interface, a server-side request forgery (SSRF) owing to an outdated third-party dependency (CVE-2019-18394), and a post-authentication command injection utilizing a daemon service are among the three flaws ("exd.pl"). 

  • The SSRF issue was caused by an out-of-date Openfire (XMPP server) jar it was vulnerable to CVE-2021-45967. This is related to CVE-2019-18394, a vulnerability in Openfire's technology that was found three years ago.
  • Instant messaging, presence, and contact list functions are all handled by XMPP, an open communication protocol. 
  • The most recent flaw was command injection in a scheduled task (CVE-2021-45966). 
To look at it another way, the vulnerabilities can be chained together to acquire access to non-exposed endpoints by sending arbitrary GET requests to obtain the administrator password, then utilizing those passwords to gain remote code execution via the scheduled job.

"This provides users full control of the device and an easy means to escalate privileges," Daniel Eshetu said, adding the attack chain may be used "to execute commands as root." The issues were reported to Pascom on January 3, 2022, and patches were released as a result. Customers who host CPS should update to the most recent version (pascom Server 19.21) as soon as possible to avoid any potential dangers.

Patches for Firefox Updates in an Emergency Two Zero-Day Vulnerabilities 

 

Mozilla released an emergency security upgrade for Firefox over the weekend to address two zero-day flaws which have been exploited in attacks. The two security holes, identified as CVE-2022-26485 and CVE-2022-26486 graded "critical severity," are use-after-free issues detected and reported by security researchers using Qihoo 360 ATA. 

WebGPU is a web API that uses a machine's graphics processing unit to support multimedia on web pages (GPU). It is used for a variety of tasks, including gaming, video conferencing, and 3D modeling. 

Both zero-day flaws are "use-after-free" problems, in which a program attempts to use memory that has already been cleared. When threat actors take advantage of this type of flaw, it can cause the program to crash while also allowing commands to be executed without permission on the device.

According to Mozilla, "an unanticipated event in the WebGPU IPC infrastructure could escalate to a use-after-free and vulnerable sandbox escape." 

Mozilla has patched the following zero-day vulnerabilities: 

  • Use-after-free in XSLT parameter processing - CVE-2022-26485 During processing, removing an XSLT argument could have resulted in an exploitable use-after-free. There have been reports of cyberattacks in the wild taking advantage of this weakness. 
  • Use-after-free in the WebGPU IPC Framework - CVE-2022-26486 A use-after-free and exploit sandbox escape could be enabled by an unexpected event in the WebGPU IPC framework. There have been reports of attacks in the wild that take advantage of this weakness. 
Since these issues are of extreme concern and are being actively exploited, it is strongly advised to all Firefox users that they upgrade their browsers right away. By heading to the Firefox menu > Help > About Firefox, users can manually check for new updates. Firefox will then look for and install the most recent update, prompting you to restart your browser.

Log4Shell Utilized for Crypto Mining and Botnet Creation

 

The serious problem in Apache's widely used Log4j project, known as Log4Shell, hasn't caused the calamity predicted, but it is still being exploited, primarily from cloud servers in the United States. Because it was reasonably straightforward to exploit and since the Java application logging library is implemented in many different services, the Log4Shell vulnerability was brought to attention as it raised concerns for being potentially abused by attackers. 

According to a Barracuda study, the targeting of Log4Shell has fluctuated over the last few months, but the frequency of exploitation attempts has remained pretty stable. Barracuda discovered the majority of exploitation attempts originated in the United States, followed by Japan, Central Europe, and Russia. 

Researchers discovered the Log4j version 2.14.1 in December 2021. Reportedly, all prior versions were vulnerable to CVE-2021-44228, also known as "Log4Shell," a significant zero-day remote code execution bug.

Log4j's creator, Apache, attempted to fix the problem by releasing version 2.15.0. However, the vulnerabilities and security flaws prolonged the patching race until the end of every year, when version 2.17.1 ultimately fixed all issues. 

Mirai malware infiltrates a botnet of remotely managed bots by targeting publicly outed network cameras, routers, and other devices. The threat actor can then use this botnet to launch DDoS assaults on a single target, exhausting its resources and disrupting any online services. The malicious actors behind these operations either rent vast botnet firepower to others or undertake DDoS attacks to extort money from businesses. Other payloads which have been discovered as a result of current Log4j exploitation include: 

  • Malware is known as BillGates (DDoS)
  • Kinsing is a term used to describe the act of (cryptominer) 
  • XMRig XMRig XMRig X (cryptominer) 
  • Muhstik Muhstik Muhstik (DDoS) 

The payloads range from harmless online jokes to crypto-mining software, which utilizes another person's computers to solve equations and earn the attacker cryptocurrency like Monero. 

The simplest method to protect oneself from these attacks is to update Log4j to version 2.17.1 or later, and to maintain all of the web apps up to date. Even if the bulk of threat actors lose interest, some will continue to target insecure Log4j deployments since the numbers are still significant. 

Security updates have been applied to valuable firms which were lucrative targets for ransomware assaults, but neglected systems running earlier versions are good targets for crypto mining and DDoS attacks.

Billions of Wi-Fi and Bluetooth Devices Susceptible to Password and Data Theft Assaults

 

Cybersecurity researchers from Darmstadt University of Technology, together with colleagues from the Secure Mobile Networking Lab, University of Brescia and CNIT, have unearthed multiple security flaws in WiFi chips that can be abused to extract passwords and manipulate traffic on a WiFi chip via a Bluetooth feature. 

According to the research paper published by the experts, modern mobile devices have a chip with separate components for Bluetooth, Wi-Fi, and LTE, each with its own dedicated security execution. However, these chips usually share the same resources such as the antenna or the wireless spectrum to enhance the efficiency of the devices, minimizing the energy consumption and the latency in communications.

The shared resources of wireless modules can be used by attackers as bridges to perform privilege escalation assaults across wireless chip boundaries, researchers explained.

“This paper demonstrates lateral privilege escalations from a Bluetooth chip to code execution on a Wi-Fi chip. The WiFi chip encrypts network traffic and holds the current WiFi credentials, thereby providing the attacker with further information,” reads the article released by cybersecurity experts. 
“Moreover, an attacker can execute code on a Wi-Fi chip even if it is not connected to a wireless network. In the opposite direction, we observe Bluetooth packet types from a Wi-Fi chip. This allows determining keystroke timings on Bluetooth keyboards, which can allow reconstructing texts entered on the keyboard.”

To test the vulnerabilities, researchers performed practical coexistence assaults on Broadcom, Cypress, and Silicon Labs chips deployed in billions of devices. The demonstration allowed researchers to achieve WiFi code execution, memory readout, and denial of service. 

In total, researchers identified nine different flaws. Some can be patched with firmware updates, while others can only be fixed with new hardware revisions that put billions of existing devices at risk of potential attacks. Attackers can execute code by exploiting an unpatched or new security issue over the air or abusing the local OS firmware update mechanism.

“Some issues can only be patched by releasing a new hardware revision. For example, a new firmware version will not physically remove shared memory from a chip or adjust for arbitrary jitter in a serial protocol. Moreover, some packet timing and metadata cannot be removed without negatively impacting packet coordination performance” researchers added. 

All the nine flaws can be tracked by the following names: 

CVE-2020-10368: WiFi unencrypted data leak (architecture) 
CVE-2020-10367: Wi-Fi code execution (architecture) 
CVE- 2019-15063: Wi-Fi denial of service (protocol) 
CVE-2020 -10370: Bluetooth denial of service (protocol) CVE-2020-10369: Bluetooth data leak (protocol) 
CVE-2020-29531: WiFi denial of service (protocol) 
CVE-2020-29533: WiFi data leak (protocol) 
CVE-2020-29532: Bluetooth denial of service (protocol) CVE-2020-29530: Bluetooth data leak (protocol) 

The researchers have reported their findings to the chip vendors, and some of them have already patched the security loopholes. However, many have not fixed these security bugs either because they are no longer compatible with the affected products or because firmware is unworkable.

BotenaGo Botnet is Targeting Millions of Routers and IoT Devices

 

A new botnet malware called BotenaGo has been discovered in the wild. The malware has the capability to exploit millions of susceptible IoT (Internet of Things) products and routers.

Discovered by AT&T labs, BotenaGo is designed using the Go programming language, which has been gaining popularity of late. Threat actors are using it for making payloads that are harder to detect and reverse engineer. 

According to Bleeping Computer, BotenaGo is flagged by only six out of the 62 antivirus engines on VirusTotal, with some falsely identifying it as the Mirai botnet. 

The botnet incorporates 33 exploits for a variety of routers, modems, and NAS devices, with some notable examples given below: 

  • CVE-2015-2051, CVE-2020-9377, CVE-2016-11021: D-Link routers
  •  CVE-2016-1555, CVE-2017-6077, CVE-2016-6277, CVE-2017-6334: Netgear devices 
  • CVE-2019-19824: Realtek SDK based routers 
  • CVE-2017-18368, CVE-2020-9054: Zyxel routers and NAS devices 
  • CVE-2020-10987: Tenda products 
  • CVE-2014-2321: ZTE modems 
  • CVE-2020-8958: Guangzhou 1GE ONU 

“To deliver its exploit, the malware first queries the target with a simple “GET” request. It then searches the returned data from the “GET” request with each system signature that was mapped to attack functions,” reads the blog post published by AT&T. 

“The string “Server: Boa/0.93.15” is mapped to the function “main_infectFunctionGponFiber,” which attempts to exploit a vulnerable target, allowing the attacker to execute an OS command via a specific web request (CVE-2020-8958).” 

The new botnet targets millions of devices with functions that exploit the above flaws, for example querying Shodan for the string Boa, which is a discontinued open-source web server used in embedded applications, and one that still returns nearly two million internet-facing devices on Shodan. Once installed, the malware will listen on the ports 31412 and 19412, the latter is used to receive the victim IP. Once a connection with information to that port is received, the bot will exploit each vulnerability on that IP address to gain access. 

Furthermore, the security researchers didn't discover an active C2 communication between BotenaGo and an actor-controlled server, these are possible scenarios hypothesized by the experts: 

1. The malware is part of a multi-stage modular malware attack, and it's not the one responsible for handling communications. 

2. BotenaGo is a new tool used by Mirai operators on specific machines that are known to them, with the attacker(s) operating the infected end-point with targets. 

3. The malware is still under development and was released in the wild accidentally.

Linux Foundation Patches Critical Critical Code Vulnerability

 

CVE-2021-43267 vulnerability is detailed as a heap overflow Transparent Inter-Process Communication (TIPC) module shipping with Linux kernels to let nodes in a group communicate with each other in a fault-proof way. 'While TIPC itself isn’t loaded automatically by the system and has to be enabled by end users, Van Amerongen said the ability to configure it from an unprivileged local perspective and the possibility of remote exploitation "makes this a dangerous vulnerability" for those that use it in their networks," reports Security Week. 

The flaw can be abused either locally or via remote code execution within a network framework to get kernel privileges, which allows a hacker to exploit an entire system. Experts discovered a bug in most attacks that used Microsoft's CodeQL, an open-source semantic code analysis engine that assists to identify security flaws. As per the experts, the flaw surfaced in the Linux kernel in September last year, after a MSG_CTYPTO (a new message type) was included to let actors distribute cryptographic codes. 

While investigating the code, expert Van Amerongen discovered a “clear-cut kernel heap buffer overflow," along with remote code execution hints. , Vulnerable TIPC module is loaded with main Linux distributions, however, it requires loading in order to trigger the vulnerability and enable the protocol. A patch was shipped by Linux foundation on October 29, confirming the existing vulnerability which affects kernel variants between 5.10 and 5.15. 

As per cybersecurity firm Sentinel One, it hasn't found any proof of vulnerability exploits in the wild. “This vulnerability can be exploited both locally and remotely. While local exploitation is easier due to greater control over the objects allocated in the kernel heap, remote exploitation can be achieved thanks to the structures that TIPC supports. As this vulnerability was discovered within a year of its introduction into the codebase, TIPC users should ensure that their Linux kernel version is not between 5.10-rc1 and 5.15,” says cybersecurity expert Van Amerongen.

PrintNightmare Threat Continues, Microsoft Confirms Exploit Present in All Variants

 

Microsoft has marked CVE-2021-34527 remote code execution vulnerability (print Spooler) called "Print Nightmare." EHN previously reported that the latest bug "CVE-2021-1675" was in the long queue of Print Spooler Bugs, and was first found by researchers at Tencent Security, NSFOCUS, and AFINE earlier this year. Microsoft said that the compromised code is sneaking all Microsoft variants. The technology giant said that it is currently confirming whether the exploit was vulnerable in every variant, however, it is confirmed that the domain controllers were compromised. 

Microsoft also said that this vulnerability is different from CVE-2021-1675, which was related to different threat vectors and a distinct exploit in RpcAddPrinterDriverEx(). As per Microsoft, the issue was dealt with the June 2021 update, however, it was not aware of the new threat. The issue existed before the update. "It remains very much an evolving situation as Microsoft scrambles to deal with the problem. Be that as it may, a vuln that can gift an attacker SYSTEM rights on a domain controller is a very, very bad thing indeed," The Register says. 

Microsoft also said that the vulnerability (PrintNightmare) was being exploited in the open. PrintNightmare is very infamous since it allows hackers to run arbitrary codes with System Privileges. According to Thee Register, a hacker successfully exploits the vulnerability (through an exploit in Windows Printer Spooler service) by installing softwares. The hacker can also play with data, and create new user accounts with full rights. As per Microsoft, the attack should involve an authorized user named RpcAddPrinterDriverEx(). 

The zero-day vulnerability was mistakenly revealed earlier this week, when a cybersecurity firm posted a PoC (Proof of Concept) report on the exploit, misunderstanding it for a security patch as part of CVE-2021-1675. However, it wasn't and resulted in a frenzied panic among the users although the exploited code was being solved. The Register reports, "Mitigations suggested so far have included shutting down the Windows Print Spooler service on domain controllers not used for printing or yanking users from a pre-Windows 2000 legacy group. Microsoft's own workarounds start with disabling the Print Spooler service and end with disabling inbound remote printing through group policy."