Security experts are warning people who use NPM — a platform where developers share code — to be careful after finding several fake software packages that secretly collect information from users' computers.
The cybersecurity company Socket found around 60 harmful packages uploaded to NPM starting mid-May. These were posted by three different accounts and looked like normal software, but once someone installed them, a hidden process ran automatically. This process collected private details such as the device name, internal IP address, the folder the user was working in, and even usernames and DNS settings. All of this was sent to attackers without the user knowing.
The script also checked whether it was running in a cloud service or a testing environment. This is likely how the attackers tried to avoid being caught by security tools.
Luckily, these packages didn’t install extra malware or try to take full control of users’ systems. There was no sign that they stayed active on the system after installation or tried to gain more access.
Still, these fake packages are dangerous. The attackers used a trick known as "typosquatting" — creating names that are nearly identical to real packages. For example, names like “react-xterm2” or “flipper-plugins” were designed to fool people who might type quickly and not notice the slight changes. The attackers appeared to be targeting software development pipelines used to build and test code automatically.
Before they were taken down, these fake packages were downloaded nearly 3,000 times.
In a separate discovery, Socket also found eight other harmful packages on NPM. These had been around for about two years and had been downloaded over 6,000 times. Unlike the first group, these could actually damage systems by deleting or corrupting data.
If you've used any unfamiliar packages recently, remove them immediately. Run a full security scan, change your passwords, and enable two-factor authentication wherever possible.
This incident shows how hackers are now using platforms like NPM to reach developers directly. It’s important to double-check any code you install, especially if it’s from a source you don’t fully recognize.
Opera’s decision to address the CrossBarking vulnerability by restricting script access to domains with private API access offers a practical, though partial, solution. This approach minimizes the risk of malicious code running within these domains, but it does not fully eliminate potential exposure. Guardio’s research emphasizes the need for Opera, and similar browsers, to reevaluate their approach to third-party extension compatibility and the risks associated with cross-browser API permissions.
This vulnerability also underscores a broader industry challenge: balancing user functionality with security. While private APIs are integral to offering customized features, they open potential entry points for attackers when not adequately protected. Opera’s reliance on responsible disclosure practices with cybersecurity firms is a step forward. However, ongoing vigilance and a proactive stance toward enhancing browser security are essential as threats continue to evolve, particularly in a landscape where third-party extensions can easily be overlooked as potential risks.
As cybercrime continues to cost the world economy billions annually, a robust new coalition launched by Google, the DNS Research Federation, and the Global Anti-Scam Alliance (GASA) is working to disrupt online scammers at a global level. By all accounts, this partnership constitutes a "game changer." The United Coalition focuses on revealing and thwarting fraudulent activity online.
Online Scam Fighting via the Global Signal Exchange
The coalition will be launching a data platform called Global Signal Exchange, which will 24/7 scan open cyberspaces for signs of fraudulent activity and issue alerts. For a platform, it will leverage the DNS Research Federation's DAP.live: an aggregation platform that consolidates feeds from over 100 sources to spot potential scams. Google enhances these efforts while providing relevant feeds from DAP.live that should provide an even more comprehensive view of online fraud as it begins to take shape.
A Growing Threat in the Digital Age
Some scams are becoming almost too clever nowadays, to the extent that an estimated $8.6 billion is lost worldwide due to such scams each year, with few cases going to convictions. In the UK alone, each person is targeted nearly 240 times a year by a scammer via emails or texts from fake legitimate businesses or offices asking them for personal information, such as bank or credit card details.
Britain estimates the average loss per person due to scams is £1,169. Overall, 11% of adults admit that they have fallen for online fraud. More alarming is the economic loss in the proportion of older adults, which indicates people aged 55 and above lose an average amount of £2,151. Those between 36 and 54 lose about £1,270, while those less than 35 years old lose about £851.
The Call for International Cooperation
Another challenge while combating online scams is that many of the criminal organisations behind these scams are operating from abroad, often from such countries as Russia and North Korea. This international nature makes it even more difficult for local authorities to keep an eye on and legally prosecute them. The coalition aims to balance this gap by sharing scam information in real time, thereby creating a chance to respond quickly to new emerging threats. This collaborative approach will serve crucially because cybercriminals often operate in groups and have done all of this work so fast, which has made it really hard to fight scams alone by any single organisation.
Scammers collaborate, they pool and they act fast. The days when individual brands could combat cybercrime on their own are gone. Global Signal Exchange usher in a new chapter in the battle against cybercrime, and Google's partnership promises to be the game-changer," said Emily Taylor, Chief Executive of DNS Research Federation.
Scammers Use All Too Familiar Brand Names Trapping Victims
The research carried out by the coalition indicates that fraudsters make use of the identity of conspicuous brands to acquire victims. Some of the very popular brands currently being used in scams are: home delivery and courier services; financial services, including banks, insurance, and loan companies; companies in the Technology, Media, and Telecoms sector; many public sector organisations, including HMRC and local councils; and, in a few instances, prominent charities.
According to DNS Research Federation, the volume of scams seems to peak each year in November during the Black Friday promotions and associated online shopping. Much of such activity is occurring because of heightened online activity. Thus, proper defences are quite essential when activity reaches such peak levels.
An alliance towards consumers' protection around the world
The Global Anti-Scam Alliance was established in 2021 to create a network of businesses that stand together to protect consumers online from fraud. GASA, in partnership with Google and the DNS Research Federation, will decrease the profitability of scams in order to make them less appealing to cybercriminals.
As threats in cyber continue to grow and seemingly intensify, this alliance will very largely form a critical element in the protection of users internationally. The Global Signal Exchange represents a major leap forward in efforts on anti-scam activities as it promises that consumers will be better protected from online fraud, and are able to navigate an increasingly complex digital environment more securely.
When it comes to cybercrime, getting into a system is only half the battle; the real challenge is extracting the stolen data without being detected. Companies often focus on preventing unauthorised access, but they must also ensure that data doesn’t slip out undetected. Hackers, driven by profit, constantly innovate methods to exfiltrate data from corporate networks, making it essential for businesses to understand and defend against these techniques.
The Challenge of Data Exfiltration
Once hackers breach a network, they need to smuggle data out without triggering alarms. Intrusion Detection Systems (IDS) are crucial in this fight. They monitor network traffic and system activities for suspicious patterns that may indicate unauthorised data extraction attempts. IDS can trigger alerts or even automatically block suspicious traffic to prevent data loss. To avoid detection, hackers use obfuscation techniques to disguise their actions. This can involve encrypting data or embedding it within harmless-looking traffic, making it difficult for IDS to identify and block the exfiltration attempts.
Reality vs. Hollywood
In Hollywood movies like "Mission Impossible," data theft is often depicted as a physical heist involving stealth and daring. In reality, hackers prefer remote methods to avoid detection and the risk of getting caught. By exploiting vulnerabilities in web servers, hackers can gain access to a network and search for valuable data. Once they find it, the challenge becomes how to exfiltrate it without triggering security systems.
One common way hackers hide their tracks is through obfuscation. A well-known method of obfuscation is image steganography, where data is embedded within images. This technique allows small amounts of data, such as passwords, to be hidden within images without raising suspicion. However, it is impractical for large datasets due to its low bandwidth and the potential for triggering alarms when numerous images are sent out.
Innovative DNS Data Exfiltration
The Domain Name System (DNS) is essential for internet functionality, translating domain names into IP addresses. Hackers can exploit this by sending data disguised as DNS queries. Typically, corporate firewalls scrutinise unfamiliar DNS requests and block those from untrusted sources. However, a novel method known as "Data Bouncing" has emerged, bypassing these restrictions and making data exfiltration easier for hackers.
How Data Bouncing Works
Data Bouncing leverages trusted web hosts to facilitate DNS resolution. Here’s how it works: hackers send an HTTP request to a reputable domain, like "bbc.co.uk," with a forged "Host" header containing the attacker’s domain. Akami Ghost HTTP servers, configured to resolve such domains, process the request, unknowingly aiding the exfiltration.
Every HTTP request a browser makes to a web server includes some metadata in the request’s headers. One of these header fields is the "Host" field, which specifies the requested domain. Normally, if you request a domain that the IP address doesn’t host, you get an error. However, Akami Ghost HTTP servers are set up to send a DNS request to resolve the domain you’ve asked for, even if it’s outside their network. This means you can send a request to a trusted domain, like "bbc.co.uk," with a "Host" header for "encryptedfilechunk.attackerdomain.com," and the trusted domain carries out the DNS resolution for you.
To prevent data exfiltration, companies need a comprehensive security strategy that includes multiple layers of defence. This makes it harder for hackers to succeed and gives security teams more time to detect and stop them. While preventing intrusions is crucial, detecting and mitigating ongoing exfiltration attempts is equally important to protect valuable data.
As cyber threats take new shapes, so must our defences. Understanding sophisticated exfiltration techniques like Data Bouncing is essential in the fight against cybercrime. By staying informed and vigilant, companies can better protect their data from falling into the wrong hands.