Search This Blog

Powered by Blogger.

Blog Archive

Labels

Footer About

Footer About

Labels

Showing posts with label qubits. Show all posts

Quantum Computing Moves Closer to Real-World Use as Researchers Push Past Major Technical Limits

 



The technology sector is preparing for another major transition, and this time the shift is not driven by artificial intelligence. Researchers have been investing in quantum computing for decades because it promises to handle certain scientific and industrial problems far faster than today’s machines. Tasks that currently require months or years of simulation – such as studying new medicines, designing materials for vehicles, or modelling financial risks could eventually be completed in hours or even minutes once the technology matures.


How quantum computers work differently

Conventional computers rely on bits, which store information strictly as zeros or ones. Quantum systems use qubits, which behave according to the rules of quantum physics and can represent several states at the same time. An easy way to picture this is to think of a coin. A classical bit resembles a coin resting on heads or tails. A qubit is like the coin while it is spinning, holding multiple possibilities simultaneously.

This ability allows quantum machines to examine many outcomes in parallel, making them powerful tools for problems that involve chemistry, physics, optimisation and advanced mathematics. They are not designed to replace everyday devices such as laptops or phones. Instead, they are meant to support specialised research in fields like healthcare, climate modelling, transportation, finance and cryptography.


Expanding industry activity

Companies and research groups are racing to strengthen quantum hardware. IBM recently presented two experimental processors named Loon and Nighthawk. Loon is meant to test the components needed for larger, error-tolerant systems, while Nighthawk is built to run more complex quantum operations, often called gates. These announcements indicate an effort to move toward machines that can keep operating even when errors occur, a requirement for reliable quantum computing.

Other major players are also pursuing their own designs. Google introduced a chip called Willow, which it says shows lower error rates as more qubits are added. Microsoft revealed a device it calls Majorana 1, built with materials intended to stabilise qubits by creating a more resilient quantum state. These approaches demonstrate that the field is exploring multiple scientific pathways at once.

Industrial collaborations are growing as well. Automotive and aerospace firms such as BMW Group and Airbus are working with Quantinuum to study how quantum tools could support fuel-cell research. Separately, Accenture Labs, Biogen and 1QBit are examining how the technology could accelerate drug discovery by comparing complex molecular structures that classical machines struggle to handle.


Challenges that still block progress

Despite the developments, quantum systems face serious engineering obstacles. Qubits are extremely sensitive to their environments. Small changes in temperature, vibrations or stray light can disrupt their state and introduce errors. IBM researchers note that even a slight shake of a table can damage a running system.

Because of this fragility, building a fault-tolerant machine – one that can detect and correct errors automatically remains one of the field’s hardest problems. Experts differ on how soon this will be achieved. An MIT researcher has estimated that dependable, large-scale quantum hardware may still require ten to twenty more years of work. A McKinsey survey found that 72 percent of executives, investors and academics expect the first fully fault-tolerant computers to be ready by about 2035. IBM has outlined a more ambitious target, aiming to reach fault tolerance before the end of this decade.


Security and policy implications

Quantum computing also presents risks. Once sufficiently advanced, these machines could undermine some current encryption systems, which is why governments and security organisations are developing quantum-resistant cryptography in advance.

The sector has also attracted policy attention. Reports indicated that some quantum companies were in early discussions with the US Department of Commerce about potential funding terms. Officials later clarified that the department is not currently negotiating equity-based arrangements with those firms.


What the future might look like

Quantum computing is unlikely to solve mainstream computing needs in the short term, but the steady pace of technical progress suggests that early specialised applications may emerge sooner. Researchers believe that once fully stable systems arrive, quantum machines could act as highly refined scientific tools capable of solving problems that are currently impossible for classical computers.