Search This Blog

Powered by Blogger.

Blog Archive

Labels

Footer About

Footer About

Labels

Google’s Quantum Breakthrough Rekindles Concerns About Bitcoin’s Long-Term Security

The experiment used a method called Quantum Echoes, where researchers advanced a quantum system through several operations.

 




Google has announced a verified milestone in quantum computing that has once again drawn attention to the potential threat quantum technology could pose to Bitcoin and other digital systems in the future.

The company’s latest quantum processor, Willow, has demonstrated a confirmed computational speed-up over the world’s leading supercomputers. Published in the journal Nature, the findings mark the first verified example of a quantum processor outperforming classical machines in a real experiment.

This success brings researchers closer to the long-envisioned goal of building reliable quantum computers and signals progress toward machines that could one day challenge the cryptography protecting cryptocurrencies.


What Google Achieved

According to Google’s study, the 105-qubit Willow chip ran a physics algorithm faster than any known classical system could simulate. This achievement, often referred to as “quantum advantage,” shows that quantum processors are starting to perform calculations that are practically impossible for traditional computers.

The experiment used a method called Quantum Echoes, where researchers advanced a quantum system through several operations, intentionally disturbed one qubit, and then reversed the sequence to see if the information would reappear. The re-emergence of this information, known as a quantum echo, confirmed the system’s interference patterns and genuine quantum behavior.

In measurable terms, Willow completed the task in just over two hours, while Frontier, one of the world’s fastest publicly benchmarked supercomputers, would need about 3.2 years to perform the same operation. That represents a performance difference of nearly 13,000 times.

The results were independently verified and can be reproduced by other quantum systems, a major step forward from previous experiments that lacked reproducibility. Google CEO Sundar Pichai noted on X that this outcome is “a substantial step toward the first real-world application of quantum computing.”

Willow’s superconducting transmon qubits achieved an impressive level of stability. The chip recorded median two-qubit gate errors of 0.0015 and maintained coherence times above 100 microseconds, allowing scientists to execute 23 layers of quantum operations across 65 qubits. This pushed the system beyond what classical models can reproduce and proved that complex, multi-layered quantum circuits can now be managed with high accuracy.


From Sycamore to Willow

The Willow processor, unveiled in December 2024, is a successor to Google’s Sycamore chip from 2019, which first claimed quantum supremacy but lacked experimental consistency. Willow bridges that gap by introducing stronger error correction and better coherence, enabling experiments that can be repeated and verified within the same hardware.

While the processor is still in a research phase, its stability and reproducibility represent significant engineering progress. The experiment also confirmed that quantum interference can persist in systems too complex for classical simulation, which strengthens the case for practical quantum applications.


Toward Real-World Uses

Google now plans to move beyond proof-of-concept demonstrations toward practical quantum simulations, such as modeling atomic and molecular interactions. These tasks are vital for fields like drug discovery, battery design, and material science, where classical computers struggle to handle the enormous number of variables involved.

In collaboration with the University of California, Berkeley, Google recently demonstrated a small-scale quantum experiment to model molecular systems, marking an early step toward what the company calls a “quantum-scope” — a tool capable of observing natural phenomena that cannot be measured using classical instruments.


The Bitcoin Question

Although Willow’s success does not pose an immediate threat to Bitcoin, it has revived discussions about how close quantum computers are to breaking elliptic-curve cryptography (ECC), which underpins most digital financial systems. ECC is nearly impossible for classical computers to reverse-engineer, but it could theoretically be broken by a powerful quantum system running algorithms such as Shor’s algorithm.

Experts caution that this risk remains distant but credible. Christopher Peikert, a professor of computer science and engineering at the University of Michigan, told Decrypt that quantum computing has a small but significant chance, over five percent, of becoming a major long-term threat to cryptocurrencies.

He added that moving to post-quantum cryptography would address these vulnerabilities, but the trade-offs include larger keys and signatures, which would increase network traffic and block sizes.


Why It Matters

Simulating Willow’s circuits using tensor-network algorithms would take more than 10 million CPU-hours on Frontier. The contrast between two hours of quantum computation and several years of classical simulation offers clear evidence that practical quantum advantage is becoming real.

The Willow experiment transitions quantum research from theory to testable engineering. It shows that real hardware can perform verified calculations that classical computers cannot feasibly replicate.

For cybersecurity professionals and blockchain developers, this serves as a reminder that quantum resistance must now be part of long-term security planning. The countdown toward a quantum future has already begun, and with each verified advance, that future moves closer to reality.



Share it:

Bitcoin

ECC

Google

Quantum computing

Technology