Search This Blog

Powered by Blogger.

Blog Archive

Labels

Footer About

Footer About

Labels

Showing posts with label Gmail. Show all posts

Gmail Credentials Appear in Massive 183 Million Infostealer Data Leak, but Google Confirms No New Breach




A vast cache of 183 million email addresses and passwords has surfaced in the Have I Been Pwned (HIBP) database, raising concern among Gmail users and prompting Google to issue an official clarification. The newly indexed dataset stems from infostealer malware logs and credential-stuffing lists collected over time, rather than a fresh attack targeting Gmail or any other single provider.


The Origin of the Dataset

The large collection, analyzed by HIBP founder Troy Hunt, contains records captured by infostealer malware that had been active for nearly a year. The data, supplied by Synthient, amounted to roughly 3.5 terabytes, comprising nearly 23 billion rows of stolen information. Each entry typically includes a website name, an email address, and its corresponding password, exposing a wide range of online accounts across various platforms.

Synthient’s Benjamin Brundage explained that this compilation was drawn from continuous monitoring of underground marketplaces and malware operations. The dataset, referred to as the “Synthient threat data,” was later forwarded to HIBP for indexing and public awareness.


How Much of the Data Is New

Upon analysis, Hunt discovered that most of the credentials had appeared in previous breaches. Out of a 94,000-record sample, about 92 percent matched older data, while approximately 8 percent represented new and unseen credentials. This translates to over 16 million previously unrecorded email addresses, fresh data that had not been part of any known breaches or stealer logs before.

To test authenticity, Hunt contacted several users whose credentials appeared in the sample. One respondent verified that the password listed alongside their Gmail address was indeed correct, confirming that the dataset contained legitimate credentials rather than fabricated or corrupted data.


Gmail Accounts Included, but No Evidence of a Gmail Hack

The inclusion of Gmail addresses led some reports to suggest that Gmail itself had been breached. However, Google has publicly refuted these claims, stating that no new compromise has taken place. According to Google, the reports stem from a misunderstanding of how infostealer databases operate, they simply aggregate previously stolen credentials from different malware incidents, not from a new intrusion into Gmail systems.

Google emphasized that Gmail’s security systems remain robust and that users are protected through ongoing monitoring and proactive account protection measures. The company said it routinely detects large credential dumps and initiates password resets to protect affected accounts.

In a statement, Google advised users to adopt stronger account protection measures: “Reports of a Gmail breach are false. Infostealer databases gather credentials from across the web, not from a targeted Gmail attack. Users can enhance their safety by enabling two-step verification and adopting passkeys as a secure alternative to passwords.”


What Users Should Do

Experts recommend that individuals check their accounts on Have I Been Pwned to determine whether their credentials appear in this dataset. Users are also advised to enable multi-factor authentication, switch to passkeys, and avoid reusing passwords across multiple accounts.

Gmail users can utilize Google’s built-in Password Manager to identify weak or compromised passwords. The password checkup feature, accessible from Chrome’s settings, can alert users about reused or exposed credentials and prompt immediate password changes.

If an account cannot be accessed, users should proceed to Google’s account recovery page and follow the verification steps provided. Google also reminded users that it automatically requests password resets when it detects exposure in large credential leaks.


The Broader Security Implications

Cybersecurity professionals stress that while this incident does not involve a new system breach, it reinforces the ongoing threat posed by infostealer malware and poor password hygiene. Sachin Jade, Chief Product Officer at Cyware, highlighted that credential monitoring has become a vital part of any mature cybersecurity strategy. He explained that although this dataset results from older breaches, “credential-based attacks remain one of the leading causes of data compromise.”

Jade further noted that organizations should integrate credential monitoring into their broader risk management frameworks. This helps security teams prioritize response strategies, enforce adaptive authentication, and limit lateral movement by attackers using stolen passwords.

Ultimately, this collection of 183 million credentials serves as a reminder that password leaks, whether new or recycled, continue to feed cybercriminal activity. Continuous vigilance, proactive password management, and layered security practices remain the strongest defenses against such risks.


OpenAI Patches ChatGPT Gmail Flaw Exploited by Hackers in Deep Research Attacks

 

OpenAI has fixed a security vulnerability that could have allowed hackers to manipulate ChatGPT into leaking sensitive data from a victim’s Gmail inbox. The flaw, uncovered by cybersecurity company Radware and reported by Bloomberg, involved ChatGPT’s “deep research” feature. This function enables the AI to carry out advanced tasks such as web browsing and analyzing files or emails stored in services like Gmail, Google Drive, and Microsoft OneDrive. While useful, the tool also created a potential entry point for attackers to exploit.  

Radware discovered that if a user requested ChatGPT to perform a deep research task on their Gmail inbox, hackers could trigger the AI into executing malicious instructions hidden inside a carefully designed email. These hidden commands could manipulate the chatbot into scanning private messages, extracting information such as names or email addresses, and sending it to a hacker-controlled server. The vulnerability worked by embedding secret instructions within an email disguised as a legitimate message, such as one about human resources processes. 

The proof-of-concept attack was challenging to develop, requiring a detailed phishing email crafted specifically to bypass safeguards. However, if triggered under the right conditions, the vulnerability acted like a digital landmine. Once ChatGPT began analyzing the inbox, it would unknowingly carry out the malicious code and exfiltrate data “without user confirmation and without rendering anything in the user interface,” Radware explained. 

This type of exploit is particularly difficult for conventional security tools to catch. Since the data transfer originates from OpenAI’s own infrastructure rather than the victim’s device or browser, standard defenses like secure web gateways, endpoint monitoring, or browser policies are unable to detect or block it. This highlights the growing challenge of AI-driven attacks that bypass traditional cybersecurity protections. 

In response to the discovery, OpenAI stated that developing safe AI systems remains a top priority. A spokesperson told PCMag that the company continues to implement safeguards against malicious use and values external research that helps strengthen its defenses. According to Radware, the flaw was patched in August, with OpenAI acknowledging the fix in September.

The findings emphasize the broader risk of prompt injection attacks, where hackers insert hidden commands into web content or messages to manipulate AI systems. Both Anthropic and Brave Software recently warned that similar vulnerabilities could affect AI-enabled browsers and extensions. Radware recommends protective measures such as sanitizing emails to remove potential hidden instructions and enhancing monitoring of chatbot activities to reduce exploitation risks.

OpenAI Rolls Out Premium Data Connections for ChatGPT Users


The ChatGPT solution has become a transformative artificial intelligence solution widely adopted by individuals and businesses alike seeking to improve their operations. Developed by OpenAI, this sophisticated artificial intelligence platform has been proven to be very effective in assisting users with drafting compelling emails, developing creative content, or conducting complex data analysis by streamlining a wide range of workflows. 

OpenAI is continuously enhancing ChatGPT's capabilities through new integrations and advanced features that make it easier to integrate into the daily workflows of an organisation; however, an understanding of the platform's pricing models is vital for any organisation that aims to use it efficiently on a day-to-day basis. A business or an entrepreneur in the United Kingdom that is considering ChatGPT's subscription options may find that managing international payments can be an additional challenge, especially when the exchange rate fluctuates or conversion fees are hidden.

In this context, the Wise Business multi-currency credit card offers a practical solution for maintaining financial control as well as maintaining cost transparency. This payment tool, which provides companies with the ability to hold and spend in more than 40 currencies, enables them to settle subscription payments without incurring excessive currency conversion charges, which makes it easier for them to manage budgets as well as adopt cutting-edge technology. 

A suite of premium features has been recently introduced by OpenAI that aims to enhance the ChatGPT experience for subscribers by enhancing its premium features. There is now an option available to paid users to use advanced reasoning models that include O1 and O3, which allow users to make more sophisticated analytical and problem-solving decisions. 

The subscription comes with more than just enhanced reasoning; it also includes an upgraded voice mode that makes conversational interactions more natural, as well as improved memory capabilities that allow the AI to retain context over the course of a long period of time. It has also been enhanced with the addition of a powerful coding assistant designed to help developers automate workflows and speed up the software development process. 

To expand the creative possibilities even further, OpenAI has adjusted token limits, which allow for greater amounts of input and output text and allow users to generate more images without interruption. In addition to expedited image generation via a priority queue, subscribers have the option of achieving faster turnaround times during high-demand periods. 

In addition to maintaining full access to the latest models, paid accounts are also provided with consistent performance, as they are not forced to switch to less advanced models when server capacity gets strained-a limitation that free users may still have to deal with. While OpenAI has put in a lot of effort into enriching the paid version of the platform, the free users have not been left out. GPT-4o has effectively replaced the older GPT-4 model, allowing complimentary accounts to take advantage of more capable technology without having to fall back to a fallback downgrade. 

In addition to basic imaging tools, free users will also receive the same priority in generation queues as paid users, although they will also have access to basic imaging tools. With its dedication to making AI broadly accessible, OpenAI has made additional features such as ChatGPT Search, integrated shopping assistance, and limited memory available free of charge, reflecting its commitment to making AI accessible to the public. 

ChatGPT's free version continues to be a compelling option for people who utilise the software only sporadically-perhaps to write occasional emails, research occasionally, and create simple images. In addition, individuals or organisations who frequently run into usage limits, such as waiting for long periods of time for token resettings, may find that upgrading to a paid plan is an extremely beneficial decision, as it unlocks uninterrupted access as well as advanced capabilities. 

In order to transform ChatGPT into a more versatile and deeply integrated virtual assistant, OpenAI has introduced a new feature, called Connectors, which is designed to transform the platform into an even more seamless virtual assistant. It has been enabled by this new feature for ChatGPT to seamlessly interface with a variety of external applications and data sources, allowing the AI to retrieve and synthesise information from external sources in real time while responding to user queries. 

With the introduction of Connectors, the company is moving forward towards providing a more personal and contextually relevant experience for our users. In the case of an upcoming family vacation, for example, ChatGPT can be instructed by users to scan their Gmail accounts in order to compile all correspondence regarding the trip. This allows users to streamline travel plans rather than having to go through emails manually. 

With its level of integration, Gemini is similar to its rivals, which enjoy advantages from Google's ownership of a variety of popular services such as Gmail and Calendar. As a result of Connectors, individuals and businesses will be able to redefine how they engage with AI tools in a new way. OpenAI intends to create a comprehensive digital assistant by giving ChatGPT secure access to personal or organisational data that is residing across multiple services, by creating an integrated digital assistant that anticipates needs, surfaces critical insights, streamlines decision-making processes, and provides insights. 

There is an increased demand for highly customised and intelligent assistance, which is why other AI developers are likely to pursue similar integrations to remain competitive. The strategy behind Connectors is ultimately to position ChatGPT as a central hub for productivity — an artificial intelligence that is capable of understanding, organising, and acting upon every aspect of a user’s digital life. 

In spite of the convenience and efficiency associated with this approach, it also illustrates the need to ensure that personal information remains protected while providing robust data security and transparency in order for users to take advantage of these powerful integrations as they become mainstream. In its official X (formerly Twitter) account, OpenAI has recently announced the availability of Connectors that can integrate with Google Drive, Dropbox, SharePoint, and Box as part of ChatGPT outside of the Deep Research environment. 

As part of this expansion, users will be able to link their cloud storage accounts directly to ChatGPT, enabling the AI to retrieve and process their personal and professional data, enabling it to create responses on their own. As stated by OpenAI in their announcement, this functionality is "perfect for adding your own context to your ChatGPT during your daily work," highlighting the company's ambition of making ChatGPT more intelligent and contextually aware. 

It is important to note, however, that access to these newly released Connectors is confined to specific subscriptions and geographical restrictions. A ChatGPT Pro subscription, which costs $200 per month, is exclusive to ChatGPT Pro subscribers only and is currently available worldwide, except for the European Economic Area (EEA), Switzerland and the United Kingdom. Consequently, users whose plans are lower-tier, such as ChatGPT Plus subscribers paying $20 per month, or who live in Europe, cannot use these integrations at this time. 

Typically, the staggered rollout of new technologies is a reflection of broader challenges associated with regulatory compliance within the EU, where stricter data protection regulations as well as artificial intelligence governance frameworks often delay their availability. Deep Research remains relatively limited in terms of the Connectors available outside the company. However, Deep Research provides the same extensive integration support as Deep Research does. 

In the ChatGPT Plus and Pro packages, users leveraging Deep Research capabilities can access a much broader array of integrations — for example, Outlook, Teams, Gmail, Google Drive, and Linear — but there are some restrictions on regions as well. Additionally, organisations with Team plans, Enterprise plans, or Educational plans have access to additional Deep Research features, including SharePoint, Dropbox, and Box, which are available to them as part of their Deep Research features. 

Additionally, OpenAI is now offering the Model Context Protocol (MCP), a framework which allows workspace administrators to create customised Connectors based on their needs. By integrating ChatGPT with proprietary data systems, organizations can create secure, tailored integrations, enabling highly specialized use cases for internal workflows and knowledge management that are highly specialized. 

With the increasing adoption of artificial intelligence solutions by companies, it is anticipated that the catalogue of Connectors will rapidly expand, offering users the option of incorporating external data sources into their conversations. The dynamic nature of this market underscores that technology giants like Google have the advantage over their competitors, as their AI assistants, such as Gemini, can be seamlessly integrated throughout all of their services, including the search engine. 

The OpenAI strategy, on the other hand, relies heavily on building a network of third-party integrations to create a similar assistant experience for its users. It is now generally possible to access the new Connectors in the ChatGPT interface, although users will have to refresh their browsers or update the app in order to activate the new features. 

As AI-powered productivity tools continue to become more widely adopted, the continued growth and refinement of these integrations will likely play a central role in defining the future of AI-powered productivity tools. A strategic approach is recommended for organisations and professionals evaluating ChatGPT as generative AI capabilities continue to mature, as it will help them weigh the advantages and drawbacks of deeper integration against operational needs, budget limitations, and regulatory considerations that will likely affect their decisions.

As a result of the introduction of Connectors and the advanced subscription tiers, people are clearly on a trajectory toward more personalised and dynamic AI assistance, which is able to ingest and contextualise diverse data sources. As a result of this evolution, it is also becoming increasingly important to establish strong frameworks for data governance, to establish clear controls for access to the data, and to ensure adherence to privacy regulations.

If companies intend to stay competitive in an increasingly automated landscape by investing early in these capabilities, they can be in a better position to utilise the potential of AI and set clear policies that balance innovation with accountability by leveraging the efficiencies of AI in the process. In the future, the organisations that are actively developing internal expertise, testing carefully selected integrations, and cultivating a culture of responsible AI usage will be the most prepared to fully realise the potential of artificial intelligence and to maintain a competitive edge for years to come.

Russian Threat Actors Circumvent Gmail Security with App Password Theft


 

As part of Google's Threat Intelligence Group (GTIG), security researchers discovered a highly sophisticated cyber-espionage campaign orchestrated by Russian threat actors. They succeeded in circumventing Google's multi-factor authentication (MFA) protections for Gmail accounts by successfully circumventing it. 

A group of researchers found that the attackers used highly targeted and convincing social engineering tactics by impersonating Department of State officials in order to establish trust with their victims in the process. As soon as a rapport had been built, the perpetrators manipulated their victims into creating app-specific passwords. 

These passwords are unique 16-character codes created by Google which enable secure access to certain applications and devices when two-factor authentication is enabled. As a result of using these app passwords, which bypass conventional two-factor authentication, the attackers were able to gain persistent access to sensitive emails through Gmail accounts undetected. 

It is clear from this operation that state-sponsored cyber actors are becoming increasingly inventive, and there is also a persistent risk posed by seemingly secure mechanisms for recovering and accessing accounts. According to Google, this activity was carried out by a threat cluster designated UNC6293, which is closely related to the Russian hacking group known as APT29. It is believed that UNC6293 has been closely linked to APT29, a state-sponsored hacker collective. 

APT29 has garnered attention as one of the most sophisticated and sophisticated Advanced Persistent Threat (APT) groups sponsored by the Russian government, and according to intelligence analysts, that group is an extension of the Russian Foreign Intelligence Service (SVR). It is important to note that over the past decade this clandestine collective has orchestrated a number of high-profile cyber-espionage campaigns targeting strategic entities like the U.S. government, NATO member organizations, and prominent research institutes all over the world, including the U.S. government, NATO, and a wide range of academic institutions. 

APT29's operators have a reputation for carrying out prolonged infiltration operations that can remain undetected for extended periods of time, characterised by their focus on stealth and persistence. The tradecraft of their hackers is consistently based on refined social engineering techniques that enable them to blend into legitimate communications and exploit the trust of their intended targets through their tradecraft. 

By crafting highly convincing narratives and gradually manipulating individuals into compromising security controls in a step-by-step manner, APT29 has demonstrated that it has the ability to bypass even highly sophisticated technical defence systems. This combination of patience, technical expertise, and psychological manipulation has earned the group a reputation as one of the most formidable cyber-espionage threats associated with Russian state interests. 

A multitude of names are used by this prolific group in the cybersecurity community, including BlueBravo, Cloaked Ursa, Cosy Bear, CozyLarch, ICECAP, Midnight Blizzard, and The Dukes. In contrast to conventional phishing campaigns, which are based on a sense of urgency or intimidation designed to elicit a quick response, this campaign unfolded in a methodical manner over several weeks. 

There was a deliberate approach by the attackers, slowly creating a sense of trust and familiarity with their intended targets. To make their deception more convincing, they distributed phishing emails, which appeared to be official meeting invitations that they crafted. Often, these messages were carefully constructed to appear authentic and often included the “@state.gov” domain as the CC field for at least four fabricated email addresses. 

The aim of this tactic was to create a sense of legitimacy around the communication and reduce the likelihood that the recipients would scrutinise it, which in turn increased the chances of the communication being exploited effectively. It has been confirmed that the British writer, Keir Giles, a senior consulting fellow at Chatham House, a renowned global affairs think tank, was a victim of this sophisticated campaign. 

A report indicates Giles was involved in a lengthy email correspondence with a person who claimed to be Claudia S Weber, who represented the U.S. Department of State, according to reports. More than ten carefully crafted messages were sent over several weeks, deliberately timed to coincide with Washington's standard business hours. Over time, the attacker gradually gained credibility and trust among the people who sent the messages. 

It is worth noting that the emails were sent from legitimate addresses, which were configured so that no delivery errors would occur, which further strengthened the ruse. When this trust was firmly established, the adversary escalated the scheme by sending a six-page PDF document with a cover letter resembling an official State Department letterhead that appeared to be an official State Department document. 

As a result of the instructions provided in the document, the target was instructed to access Google's account settings page, to create a 16-character app-specific password labelled "ms.state.gov, and to return the code via email under the guise of completing secure onboarding. As a result of the app password, the threat actors ended up gaining sustained access to the victim's Gmail account, bypassing multi-factor authentication altogether as they were able to access their accounts regularly. 

As the Citizen Lab experts were reviewing the emails and PDF at Giles' request, they noted that the emails and PDF were free from subtle language inconsistencies and grammatical errors that are often associated with fraudulent communications. In fact, based on the precision of the language, researchers have suspected that advanced generative AI tools have been deployed to craft polished, credible content for the purpose of evading scrutiny and enhancing the overall effectiveness of the deception as well. 

There was a well-planned, incremental strategy behind the attack campaign that was specifically geared towards increasing the likelihood that the targeted targets would cooperate willingly. As one documented instance illustrates, the threat actor tried to entice a leading academic expert to participate in a private online discussion under the pretext of joining a secure State Department forum to obtain his consent.

In order to enable guest access to Google's platform, the victim was instructed to create an app-specific password using Google's account settings. In fact, the attacker used this credential to gain access to the victim's Gmail account with complete control over all multi-factor authentication procedures, enabling them to effectively circumvent all of the measures in place. 

According to security researchers, the phishing outreach was carefully crafted to look like a routine, legitimate onboarding process, thus making it more convincing. In addition to the widespread trust that many Americans place in official communications issued by U.S. government institutions, the attackers exploited the general lack of awareness of the dangers of app-specific passwords, as well as their widespread reliance on official communications. 

A narrative of official protocol, woven together with professional-sounding language, was a powerful way of making the perpetrators more credible and decreasing the possibility of the target questioning their authenticity in their request. According to cybersecurity experts, several individuals who are at higher risk from this campaign - journalists, policymakers, academics, and researchers - should enrol in Google's Advanced Protection Program (APP). 

A major component of this initiative is the restriction of access to only verified applications and devices, which offers enhanced safeguards. The experts also advise organisations that whenever possible, they should disable the use of app-specific passwords and set up robust internal policies that require any unusual or sensitive requests to be verified, especially those originating from reputable institutions or government entities, as well as implement robust internal policies requiring these types of requests. 

The intensification of training for personnel most vulnerable to these prolonged social engineering attacks, coupled with the implementation of clear, secure channels for communication between the organisation and its staff, would help prevent the occurrence of similar breaches in the future. As a result of this incident, it serves as an excellent reminder that even mature security ecosystems remain vulnerable to a determined adversary combining psychological manipulation with technical subterfuge when attempting to harm them. 

With threat actors continually refining their methods, organisations and individuals must recognise that robust cybersecurity is much more than merely a set of tools or policies. In order to combat cyberattacks as effectively as possible, it is essential to cultivate a culture of vigilance, scepticism, and continuous education. In particular, professionals who routinely take part in sensitive research, diplomatic relations, or public relations should assume they are high-value targets and adopt a proactive defence posture. 

Consequently, any unsolicited instructions must be verified by a separate, trusted channel, hardware security keys should be used to supplement authentication, and account settings should be reviewed regularly for unauthorised changes. For their part, institutions should ensure that security protocols are both accessible and clearly communicated as they are technically sound by investing in advanced threat intelligence, simulating sophisticated phishing scenarios, and investing in advanced threat intelligence. 

Fundamentally, resilience against state-sponsored cyber-espionage is determined by the ability to plan in advance not only how adversaries are going to deploy their tactics, but also the trust they will exploit in order to reach their goals.

Malicious PyPI Packages Exploit Gmail to Steal Sensitive Data

 

Cybersecurity researchers have uncovered a disturbing new tactic involving malicious PyPI packages that use Gmail to exfiltrate stolen data and communicate with threat actors. The discovery, made by security firm Socket, led to the removal of the infected packages from the Python Package Index (PyPI), although not before considerable damage had already occurred.

Socket reported identifying seven malicious packages on PyPI, some of which had been listed for more than four years. Collectively, these packages had been downloaded over 55,000 times. Most were spoofed versions of the legitimate "Coffin" package, with deceptive names such as Coffin-Codes-Pro, Coffin-Codes, NET2, Coffin-Codes-NET, Coffin-Codes-2022, Coffin2022, and Coffin-Grave. Another package was titled cfc-bsb.

According to the researchers, once installed, these packages would connect to Gmail using hardcoded credentials and initiate communication with a command-and-control (C2) server. They would then establish a WebSockets tunnel that leverages Gmail’s email server, allowing the traffic to bypass traditional firewalls and security systems.

This setup enabled attackers to remotely execute code, extract files, and gain unauthorized access to targeted systems.

Evidence suggests that the attackers were mainly targeting cryptocurrency assets. One of the email addresses used by the malware featured terms like “blockchain” and “bitcoin” — an indication of its intent.

“Coffin-Codes-Pro establishes a connection to Gmail’s SMTP server using hardcoded credentials, namely sphacoffin@gmail[.]com and a password,” the report says.
“It then sends a message to a second email address, blockchain[.]bitcoins2020@gmail[.]com politely and demurely signaling that the implant is working.”

Socket has issued a warning to all Python developers and users who may have installed these packages, advising them to remove the compromised libraries immediately, and rotate all sensitive credentials.

The researchers further advised developers to remain alert for suspicious outbound connections:

“especially SMTP traffic”, and warned them not to trust a package just because it was a few years old.
“To protect your codebase, always verify package authenticity by checking download counts, publisher history, and GitHub repository links,” they added.

“Regular dependency audits help catch unexpected or malicious packages early. Keep strict access controls on private keys, carefully limiting who can view or import them in development. Use isolated, dedicated environments when testing third-party scripts to contain potentially harmful code.”

Don’t Delete Spam Emails Too Quickly — Here’s Why


 

Most of us delete spam emails as soon as they land in our inbox. They’re irritating, unwanted, and often contain suspicious content. But what many people don’t know is that keeping them, at least briefly can actually help improve your email security in the long run.


How Spam Helps Train Your Email Filter

Email services like Gmail, Outlook, and others have systems that learn to detect unwanted emails over time. But for these systems to improve, they need to be shown which emails are spam. That’s why it’s better to mark suspicious messages as spam instead of just deleting them.

If you’re using a desktop email app like Outlook or Thunderbird, flagging such emails as “junk” helps the program recognize future threats better. If you're reading emails through a browser, you can select the unwanted message and use the “Spam” or “Move to Junk” option to send it to the right folder.

Doing this regularly not only protects your own inbox but can also help your co-workers if you’re using a shared office mail system. The more spam messages you report, the faster the system learns to block similar ones.


No Need to Worry About Storage

Spam folders usually empty themselves after 30 days. So you don’t have to worry about them piling up unless you want to manually clear them every month.


Never Click 'Unsubscribe' on Random Emails

Some emails, especially promotional ones, come with an unsubscribe button. While this can work with genuine newsletters, using it on spam emails is risky. Clicking “unsubscribe” tells scammers that your email address is real and active. This can lead to more dangerous emails or even malware attacks.


How to Stay Safe from Email Scams

1. Be alert. If something feels off, don’t open it.

2. Avoid acting quickly. Scammers often try to pressure you.

3. Don’t click on unknown links. Instead, visit websites directly.

4. Never open files from unknown sources. They can hide harmful programs.

5. Use security tools. Good antivirus software can detect harmful links and block spam automatically.


Helpful Software You Can Use

Programs like Bitdefender offer full protection from online threats. They can block viruses, dangerous attachments, and suspicious websites. Bitdefender also includes a chatbot where you can send messages to check if they’re scams. Another option is Avast One, which keeps your devices safe from fake websites and spam, even on your phone. Both are easy to use and budget-friendly.

While it may seem odd, keeping spam emails for a short time and using them to train your inbox filter can actually make your online experience safer. Just remember — never click links or download files from unknown senders. Taking small steps can protect you from big problems.

Gmail Users Face a New Dilemma Between AI Features and Data Privacy

 



Google’s Gmail is now offering two new upgrades, but here’s the catch— they don’t work well together. This means Gmail’s billions of users are being asked to pick a side: better privacy or smarter features. And this decision could affect how their emails are handled in the future.

Let’s break it down. One upgrade focuses on stronger protection of your emails, which works like advanced encryption. This keeps your emails private, even Google won’t be able to read them. The second upgrade brings in artificial intelligence tools to improve how you search and use Gmail, promising quicker, more helpful results.

But there’s a problem. If your emails are fully protected, Gmail’s AI tools can’t read them to include in its search results. So, if you choose privacy, you might lose out on the benefits of smarter searches. On the other hand, if you want AI help, you’ll need to let Google access more of your email content.

This challenge isn’t unique to Gmail. Many tech companies are trying to combine stronger security with AI-powered features, but the two don’t always work together. Apple tried solving this with a system that processes data securely on your device. However, delays in rolling out their new AI tools have made their solution uncertain for now.

Some reports explain the choice like this: if you turn on AI features, Google will use your data to power smart tools. If you turn it off, you’ll have better privacy, but lose some useful options. The real issue is that opting out isn’t always easy. Some settings may remain active unless you manually turn them off, and fully securing your emails still isn’t simple.

Even when extra security is enabled, email systems have limitations. For example, Apple’s iCloud Mail doesn’t use full end-to-end encryption because it must work with global email networks. So even private emails may not be completely safe.

This issue goes beyond Gmail. Other platforms are facing similar challenges. WhatsApp, for example, added a privacy mode that blocks saving chats and media, but also limits AI-related features. OpenAI’s ChatGPT can now remember what you told it in past conversations, which may feel helpful but also raises questions about how your personal data is being stored.

In the end, users need to think carefully. AI tools can make email more useful, but they come with trade-offs. Email has never been a perfectly secure space, and with smarter AI, new threats like scams and data misuse may grow. That’s why it’s important to weigh both sides before making a choice.



Google Rolls Out Simplified End-to-End Encryption for Gmail Enterprise Users

 

Google has begun the phased rollout of a new end-to-end encryption (E2EE) system for Gmail enterprise users, simplifying the process of sending encrypted emails across different platforms.

While businesses could previously adopt the S/MIME (Secure/Multipurpose Internet Mail Extensions) protocol for encrypted communication, it involved a resource-intensive setup — including issuing and managing certificates for all users and exchanging them before messages could be sent.

With the introduction of Gmail’s enhanced E2EE model, Google says users can now send encrypted emails to anyone, regardless of their email service, without needing to handle complex certificate configurations.

"This capability, requiring minimal efforts for both IT teams and end users, abstracts away the traditional IT complexity and substandard user experiences of existing solutions, while preserving enhanced data sovereignty, privacy, and security controls," Google said today.

The rollout starts in beta with support for encrypted messages sent within the same organization. In the coming weeks, users will be able to send encrypted emails to any Gmail inbox — and eventually to any email address, Google added.

"We're rolling this out in a phased approach, starting today, in beta, with the ability to send E2EE emails to Gmail users in your own organization. In the coming weeks, users will be able to send E2EE emails to any Gmail inbox, and, later this year, to any email inbox."

To compose an encrypted message, users can simply toggle the “Additional encryption” option while drafting their email. If the recipient is a Gmail user with either an enterprise or personal account, the message will decrypt automatically.

For users on the Gmail mobile app or non-Gmail email services, a secure link will redirect them to view the encrypted message in a restricted version of Gmail. These recipients can log in using a guest Google Workspace account to read and respond securely.

If the recipient already has S/MIME enabled, Gmail will continue to use that protocol automatically for encryption — just as it does today.

The new encryption capability is powered by Gmail's client-side encryption (CSE), a Workspace control that allows organizations to manage their own encryption keys outside of Google’s infrastructure. This ensures sensitive messages and attachments are encrypted locally on the client device before being sent to the cloud.

The approach supports compliance with various regulatory frameworks, including data sovereignty, HIPAA, and export control policies, by ensuring that encrypted content is inaccessible to both Google and any external entities.

Gmail’s CSE feature has been available to Google Workspace Enterprise Plus, Education Plus, and Education Standard customers since February 2023. It was initially introduced in beta for Gmail on the web in December 2022, following earlier launches across Google Drive, Docs, Sheets, Slides, Meet, and Calendar.