Researchers from City College of New York, Harvard University, and Johns Hopkins University have developed Amigo, a prototype mesh network specifically designed to maintain communication during political protests and internet blackouts imposed by authoritarian regimes. The system addresses critical failures in existing mesh network technology that have plagued protesters in countries like Myanmar, India, and Bangladesh, where governments routinely shut down internet connectivity to suppress civil unrest.
Traditional mesh networks create local area networks by connecting smartphones directly to each other, allowing users to bypass conventional wireless infrastructure. However, these systems have historically struggled with messages failing to deliver, appearing out of order, and leaking compromising metadata that allows authorities to trace users. The primary technical challenge occurs when networks experience strain, causing nodes to send redundant messages that flood and collapse the system.
Dynamic clique architecture
Amigo overcomes these limitations through an innovative approach that dynamically segments the network into geographical "cliques" with designated lead nodes. Within each clique, individual devices communicate only with their assigned leader, who then relays data to other lead nodes. This hierarchical structure dramatically reduces redundant messaging and prevents network congestion, resembling the clandestine cell systems historically used by resistance movements where members could only communicate through local anonymous leaders.
Advanced security features
Security represents another major innovation in Amigo's design. The system implements "outsider anonymity," making it impossible for bystanders or surveillance systems to detect that a group exists. It enables secure removal of compromised devices from encrypted groups, a persistent vulnerability in older mesh standards. Amigo incorporates forward secrecy, ensuring past communications remain secure even if encryption keys are compromised, and post-compromise security that automatically generates new keys when breaches are detected, effectively blocking intruders
Realistic movement modeling
Unlike previous mesh systems that treated users as randomly moving particles, Amigo integrates psychological crowd modeling based on sociological research. Graduate researcher Cora Ruiz discovered that people in protests move closer together, slower, and in synchronized patterns. This realistic movement modeling creates more stable communication patterns in dense, moving environments, preventing the misrouted messages that plagued earlier systems.
While designed for political activism, Amigo's applications extend to disaster recovery scenarios where communication infrastructure is destroyed. The technology could prove vital for first responders, citizens, and volunteers operating in devastated areas or remote regions without grid connectivity. Lead researcher Tushar Jois indicates the next phase involves working directly with activists and journalists to understand protester needs and test how the network functions as demonstrations evolve.